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Chapter 1. Overview
eCos was designed from the very beginning as a configurable component architecture. The core eCos system
consists of a number of different components such as the kernel, the C library, an infrastructure package. Each
of these provides a large number of configuration options, allowing application developers to build a system
that matches the requirements of their particular application. To manage the potential complexity of multiple
components and lots of configuration options, eCos comes with a component framework: a collection of tools
specifically designed to support configuring multiple components. Furthermore this component framework is
extensible, allowing additional components to be added to the system at any time.

Terminology
The eCos component architecture involves a number of key concepts.

Component Framework

The phrase component framework is used to describe the collection of tools that allow users to configure a
system and administer a component repository. This includes the ecosconfig command line tool, the graphical
configuration tool, and the package administration tool. Both the command line and graphical tools are based
on a single underlying library, the CDL library.

Configuration Option

The option is the basic unit of configurability. Typically each option corresponds to a single choice that a
user can make. For example there is an option to control whether or not assertions are enabled, and the kernel
provides an option corresponding to the number of scheduling priority levels in the system. Options can control
very small amounts of code such as whether or not the C library’sstrtok gets inlined. They can also control
quite large amounts of code, for example whether or not theprintf supports floating point conversions.

Many options are straightforward, and the user only gets to choose whether the option is enabled or disabled.
Some options are more complicated, for example the number of scheduling priority levels is a number that
should be within a certain range. Options should always start off with a sensible default setting, so that it is
not necessary for users to make hundreds of decisions before any work can start on developing the application.
Once the application is running the various configuration options can be used to tune the system for the specific
needs of the application.

The component framework allows for options that are not directly user-modifiable. Consider the case of pro-
cessor endianness: some processors are always big-endian or always little-endian, while with other processors
there is a choice. Depending on the user’s choice of target hardware, endianness may or may not be user-
modifiable.

Component

A component is a unit of functionality such as a particular kernel scheduler or a device driver for a specific
device. A component is also a configuration option in that users may want to enable or disable all the function-
ality in a component. For example, if a particular device on the target hardware is not going to be used by the
application, directly or indirectly, then there is no point in having a device driver for it. Furthermore disabling
the device driver should reduce the memory requirements for both code and data.

Components may contain further configuration options. In the case of a device driver, there may be options
to control the exact behavior of that driver. These will of course be irrelevant if the driver as a whole is
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Chapter 1. Overview

disabled. More generally options and components live in a hierarchy, where any component can contain options
specific to that component and further sub-components. It is possible to view the entire eCos kernel as one big
component, containing sub-components for scheduling, exception handling, synchronization primitives, and so
on. The synchronization primitives component can contain further sub-components for mutexes, semaphores,
condition variables, event flags, and so on. The mutex component can contain configuration options for issues
like priority inversion support.

Package

A package is a special type of component. Specifically, a package is the unit of distribution of components. It is
possible to create a distribution file for a package containing all of the source code, header files, documentation,
and other relevant files. This distribution file can then be installed using the appropriate tool. Afterwards it is
possible to uninstall that package, or to install a later version. The core eCos distribution comes with a number
of packages such as the kernel and the infrastructure. Other packages such as network stacks can come from
various different sources and can be installed alongside the core distribution.

Packages can be enabled or disabled, but the user experience is a little bit different. Generally it makes no
sense for the tools to load the details of every single package that has been installed. For example, if the target
hardware uses an ARM processor then there is no point in loading the HAL packages for other architectures
and displaying choices to the user which are not relevant. Therefore enabling a package means loading its con-
figuration data into the appropriate tool, and disabling a package is an unload operation. In addition, packages
are not just enabled or disabled: it is also possible to select the particular version of a package that should be
used.

Configuration

A configuration is a collection of user choices. The various tools that make up the component framework
deal with entire configurations. Users can create a new configuration, output a savefile (by defaultecos.ecc ),
manipulate a configuration, and use a configuration to generate a build tree prior to building eCos and any other
packages that have been selected. A configuration includes details such as which packages have been selected,
in addition to finer-grained information such as which options in those packages have been enabled or disabled
by the user.

Target

The target is the specific piece of hardware on which the application is expected to run. This may be an
off-the-shelf evaluation board, a piece of custom hardware intended for a specific application, or it could be
something like a simulator. One of the steps when creating a new configuration is need to specify the target.
The component framework will map this on to a set of packages that are used to populate the configuration,
typically HAL and device driver packages, and in addition it may cause certain options to be changed from
their default settings to something more appropriate for the specified target.

Template

A template is a partial configuration, aimed at providing users with an appropriate starting point. eCos is
shipped with a small number of templates, which correspond closely to common ways of using the system.
There is a minimal template which provides very little functionality, just enough to bootstrap the hardware and
then jump directly to application code. The default template adds additional functionality, for example it causes
the kernel and C library packages to be loaded as well. The uitron template adds further functionality in the
form of aµITRON compatibility layer. Creating a new configuration typically involves specifying a template

2



Chapter 1. Overview

as well as a target, resulting in a configuration that can be built and linked with the application code and that
will run on the actual hardware. It is then possible to fine-tune configuration options to produce something that
better matches the specific requirements of the application.

Properties

The component framework needs a certain amount of information about each option. For example it needs to
know what the legal values are, what the default should be, where to find the on-line documentation if the user
needs to consult that in order to make a decision, and so on. These are all properties of the option. Every option
(including components and packages) consists of a name and a set of properties.

Consequences

Choices must have consequences. For an eCos configuration the main end product is a library that can be linked
with application code, so the consequences of a user choice must affect the build process. This happens in two
main ways. First, options can affect which files get built and end up in the library. Second, details of the current
option settings get written into various configuration header files using C preprocessor#define directives, and
package source code can#include these configuration headers and adapt accordingly. This allows options to
affect a package at a very fine grain, at the level of individual lines in a source file if desired. There may be
other consequences as well, for example there are options to control the compiler flags that get used during the
build process.

Constraints

Configuration choices are not independent. The C library can provide thread-safe implementations of functions
like rand , but only if the kernel provides support for per-thread data. This is a constraint: the C library option
has a requirement on the kernel. A typical configuration involves a considerable number of constraints, of
varying complexity: many constraints are straightforward, optionA requires optionB, or optionC precludes
option D. Other constraints can be more complicated, for example optionE may require the presence of a
kernel scheduler but does not care whether it is the bitmap scheduler, the mlqueue scheduler, or something
else.

Another type of constraint involves the values that can be used for certain options. For example there is a
kernel option related to the number of scheduling levels, and there is a legal values constraint on this option:
specifying zero or a negative number for the number of scheduling levels makes no sense.

Conflicts

As the user manipulates options it is possible to end up with an invalid configuration, where one or more
constraints are not satisfied. For example if kernel per-thread data is disabled but the C library’s thread-safety
options are left enabled then there are unsatisfied constraints, also known as conflicts. Such conflicts will be
reported by the configuration tools. The presence of conflicts does not prevent users from attempting to build
eCos, but the consequences are undefined: there may be compile-time failures, there may be link-time failures,
the application may completely fail to run, or the application may run most of the time but once in a while
there will be a strange failure. . . Typically users will want to resolve all conflicts before continuing.

To make things easier for the user, the configuration tools contain an inference engine. This can examine a
conflict in a particular configuration and try to figure out some way of resolving the conflict. Depending on the
particular tool being used, the inference engine may get invoked automatically at certain times or the user may
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need to invoke it explicitly. Also depending on the tool, the inference engine may apply any solutions it finds
automatically or it may request user confirmation.

CDL

The configuration tools require information about the various options provided by each package, their conse-
quences and constraints, and other properties such as the location of on-line documentation. This information
has to be provided in the form of CDL scripts. CDL is short for Component Definition Language, and is
specifically designed as a way of describing configuration options.

A typical package contains the following:

1. Some number of source files which will end up in a library. The application code will be linked with this
library to produce an executable. Some source files may serve other purposes, for example to provide a
linker script.

2. Exported header files which define the interface provided by the package.

3. On-line documentation, for example reference pages for each exported function.

4. Some number of test cases, shipped in source format, allowing users to check that the package is working
as expected on their particular hardware and in their specific configuration.

5. One or more CDL scripts describing the package to the configuration system.

Not all packages need to contain all of these. For example some packages such as device drivers may not
provide a new interface, instead they just provide another implementation of an existing interface. However all
packages must contain a CDL script that describes the package to the configuration tools.

Component Repository

All eCos installations include a component repository. This is a directory structure where all the packages get
installed. The component framework comes with an administration tool that allows new packages or new ver-
sions of a package to be installed, old packages to be removed, and so on. The component repository includes
a simple database, maintained by the administration tool, which contains details of the various packages.

Generally application developers do not need to modify anything inside the component repository, except
by means of the administration tool. Instead their work involves separate build and install trees. This allows
the component repository to be treated as a read-only resource that can be shared by multiple projects and
multiple users. Component writers modifying one of the packages do need to manipulate files in the component
repository.

Why Configurability?
The eCos component framework places a great deal of emphasis on configurability. The fundamental goal is to
allow large parts of embedded applications to be constructed from re-usable software components, which does
not a priori require that those components be highly configurable. However embedded application development
often involves some serious constraints.

Many embedded applications have to work with very little memory, to keep down manufacturing costs. The
final application image that will get blown into EPROM’s or used to manufacture ROMs should contain only
the code that is absolutely necessary for the application to work, and nothing else. If a few tens of kilobytes are
added unnecessarily to a typical desktop application then this is regrettable, but is quite likely to go unnoticed.

4



Chapter 1. Overview

If an embedded application does not fit on the target hardware then the problem is much more serious. The
component framework must allow users to configure the components so that any unnecessary functionality
gets removed.

Many embedded applications need deterministic behavior so that they can meet real-time requirements. Such
deterministic behavior can often be provided, but at a cost in terms of code size, slower algorithms, and so
on. Other applications have no such real-time requirements, or only for a small part of the overall system, and
the bulk of the system should not suffer any penalties. Again the component framework must allow the users
control over the timing behavior of components.

Embedded systems tend to be difficult to debug. Even when it is possible to get information out of the tar-
get hardware by means other than flashing an LED, the more interesting debugging problems are likely to
be timing-related and hence very hard to reproduce and track down. The re-usable components can provide
debugging assistance in various ways. They can provide functionality that can be exploited by source level
debuggers such as gdb, for example per-thread debugging information. They can also contain various asser-
tions so that problems can be detected early on, tracing mechanisms to figure out what happened before the
assertion failure, and so on. Of course all of these involve overheads, especially code size, and affect the tim-
ing. Allowing users to control which debugging features are enabled for any given application build is very
desirable.

However, although it is desirable for re-usable components to provide appropriate configuration options
this is not required. It is possible to produce a package which does not provide a single configuration
option — although the user still gets to choose whether or not to use the package. In such cases it is still
necessary to provide a minimal CDL script, but its main purpose would be to integrate the package with the
component framework’s build system.

Approaches to Configurability
The purpose of configurability is to control the behavior of components. A scheduler component may or may
not support time slicing; it may or may not support multiple priorities; it may or may not perform error checking
on arguments passed to the scheduler routines. In the context of a desktop application a button widget may
contain some text or it may contain a picture; the text may be displayed in a variety of fonts; the foreground and
background color may vary. When an application uses a component there must be some way of specifying the
desired behavior. The component writer has no way of knowing in advance exactly how a particular component
will end up being used.

One way to control the behavior is at run time. The application creates an instance of a button object, and then
instructs this object to display either text or a picture. No special effort by the application developer is required,
since a button can always support all desired behavior. There is of course a major disadvantage in terms of the
size of the final application image: the code that gets linked with the application has to provide support for all
possible behavior, even if the application does not require it.

Another approach is to control the behavior at link-time, typically by using inheritance in an
object-oriented language. The button library provides an abstract base classButton and derived
classesTextButton and PictureButton . If an application only uses text buttons then it will only
create objects of typeTextButton , and the code for thePictureButton class does not get used.
In many cases this approach works rather well and reduces the final image size, but there are
limitations. The main one is that you can only have so many derived classes before the system gets
unmanageable: a derived classTextButtonUsingABorderWidthOfOnePlusAWhiteBackgroundAndBlack-

ForegroundAndATwelvePointTimesFontAndNoErrorCheckingOrAssertions is not particularly sensible
as far as most application developers are concerned.

The eCos component framework allows the behavior of components to be controlled at an even earlier time:
when the component source code gets compiled and turned into a library. The button component could provide
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options, for example an option that only text buttons need to be supported. The component gets built and
becomes part of a library intended specifically for the application, and the library will contain only the code
that is required by this application and nothing else. A different application with different requirements would
need its own version of the library, configured separately.

In theory compile-time configurability should give the best possible results in terms of code size, because
it allows code to be controlled at the individual statement level rather than at the function or object level.
Consider an example more closely related to embedded systems, a package to support multi-threading. A
standard routine within such a package allows applications to kill threads asynchronously: the POSIX routine
for this is pthread_cancel ; the equivalent routine inµITRON is ter_tsk . These routines themselves tend
to involve a significant amount of code, but that is not the real problem: other parts of the system require
extra code and data for the kill routine to be able to function correctly. For example if a thread is blocked while
waiting on a mutex and is killed off by another thread then the kill operation may have to do two things: remove
the thread from the mutex’s queue of waiting threads; and undo the effects, if any, of priority inheritance. The
implementation requires extra fields in the thread data structure so that the kill routine knows about the thread’s
current state, and extra code in the mutex routines to fill in and clear these extra fields correctly.

Most embedded applications do not require the ability to kill off a thread asynchronously, and hence the kill
routine will not get linked into the final application image. Without compile-time configurability this would
still mean that the mutex code and similar parts of the system contain code and data that serve no useful
purpose in this application. The eCos approach allows the user to select that the thread kill functionality is not
required, and all the components can adapt to this at compile-time. For example the code in the mutex lock
routine contains statements to support the killing of threads, but these statements will only get compiled in if
that functionality is required. The overall result is that the final application image contains only the code and
data that is really needed for the application to work, and nothing else.

Of course there are complications. To return to the button example, the application code might only use text
buttons directly, but it might also use some higher-level widget such as a file selector and this file selector might
require buttons with pictures. Therefore the button code must still be compiled to support pictures as well as
text. The configuration tools must be aware of the dependencies between components and ensure that the
internal constraints are met, as well as the external requirements of the application code. An area of particular
concern is conflicting requirements: a button component might be written in such a way that it can only support
either text buttons or picture buttons, but not both in one application; this would represent a weakness in the
component itself rather than in the component framework as a whole.

Compile-time configurability is not intended to replace the other approaches but rather to complement them.
There will be times when run-time selection of behavior is desirable: for example an application may need
to be able to change the baud rate of a serial line, and the system must then provide a way of doing this at
run-time. There will also be times when link-time selection is desirable: for example a C library might provide
two different random number routinesrand and lrand48 ; these do not affect other code so there is no good
reason for the C library component not to provide both of these, and allow the application code to use none,
one, or both of them as appropriate; any unused functions will just get eliminated at link-time. Compile-time
selection of behavior is another option, and it can be the most powerful one of the three and the best suited to
embedded systems development.

Degrees of Configurability
Components can support configurability in varying degrees. It is not necessary to have any configuration op-
tions at all, and the only user choice is whether or not to load a particular package. Alternatively it is possible
to implement highly-configurable code. As an example consider a typical facility that is provided by many
real-time kernels, mutex locks. The possible configuration options include:
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1. If no part of the application and no other component requires mutexes then there is no point in having the
mutex code compiled into a library at all. This saves having to compile the code. In addition there will
never be any need for the user to configure the detailed behavior of mutexes. Therefore the presence of
mutexes is a configuration option in itself.

2. Even if the application does make use of mutexes directly or indirectly, this does not mean that all mutex
functions have to be included. The minimum functionality consists of lock and unlock functions. However
there are variants of the locking primitive such as try-lock and try-with-timeout which may or may not be
needed.

Generally it will be harmless to compile the try-lock function even if it is not actually required, because
the function will get eliminated at link-time. Some users might take the view that the try-lock function
should never get compiled in unless it is actually needed, to reduce compile-time and disk usage. Other
users might argue that there are very few valid uses for a try-lock function and it should not be compiled
by default to discourage incorrect uses. The presence of a try-lock function is a possible configuration
option, although it may be sensible to default it to true.

The try-with-timeout variant is more complicated because it adds a dependency: the mutex code will now
rely on some other component to provide a timer facility. To make things worse the presence of this timer
might impact other components, for example it may now be necessary to guard against timer interrupts,
and thus have an insidious effect on code size. The presence of a lock-with-timeout function is clearly a
sensible configuration option, but the default value is less obvious. If the option is enabled by default then
the final application image may end up with code that is not actually essential. If the option is disabled
by default then users will have to enable the option somehow in order to use the function, implying more
effort on the part of the user. One possible approach is to calculate the default value based on whether or
not a timer component is present anyway.

3. The application may or may not require the ability to create and destroy mutexes dynamically. For most
embedded systems it is both less error-prone and more efficient to create objects like mutexes statically.
Dynamic creation of mutexes can be implemented using a pre-allocated pool of mutex objects, involving
some extra code to manipulate the pool and an additional configuration option to define the size of the
pool. Alternatively it can be implemented using a general-purpose memory allocator, involving quite a lot
of extra code and configuration options. However this general-purpose memory allocator may be present
anyway to support the application itself or some other component. The ability to create and destroy mu-
texes dynamically is a configuration option, and there may not be a sensible default that is appropriate for
all applications.

4. An important issue for mutex locks is the handling of priority inversion, where a high priority thread
is prevented from running because it needs a lock owned by a lower priority thread. This is only an
issue if there is a scheduler with multiple priorities: some systems may need multi-threading and hence
synchronization primitives, but a single priority level may suffice. If priority inversion is a theoretical
possibility then the application developer may still want to ignore it because the application has been
designed such that the problem cannot arise in practice. Alternatively the developer may want some sort
of exception raised if priority inversion does occur, because it should not happen but there may still be bugs
in the code. If priority inversion can occur legally then there are three main ways of handling it: priority
ceilings, priority inheritance, and ignoring the problem. Priority ceilings require little code but extra effort
on the part of the application developer. Priority inheritance requires more code but is automatic. Ignoring
priority inversion may or may not be acceptable, depending on the application and exactly when priority
inversion can occur. Some of these choices involve additional configuration options, for example there are
different ways of raising an exception, and priority inheritance may or may not be applied recursively.

5. As a further complication some mutexes may be hidden inside a component rather than being an explicit
part of the application. For example, if the C library is configured to provide amalloc call then there may
be an associated mutex to make the function automatically thread-safe, with no need for external locking.
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In such cases the memory allocation component of the C library can impose a constraint on the kernel,
requiring that mutexes be provided. If the user attempts to disable mutexes anyway then the configuration
tools will report a conflict.

6. The mutex code should contain some general debugging code such as assertions and tracing. Usually such
debug support will be enabled or disabled at a coarse level such as the entire system or everything inside
the kernel, but sometimes it will be desirable to enable the support more selectively. One reason would
be memory requirements: the target may not have enough memory to hold the system if all debugging is
enabled. Another reason is if most of the system is working but there are a few problems still to resolved;
enabling debugging in the entire system might change the system’s timing behavior too much, but enabling
some debug options selectively can still be useful. There should be configuration options to allow specific
types of debugging to be enabled at a fine-grain, but with default settings inherited from an enclosing
component or from global settings.

7. The mutex code may contain specialized code to interact with a debugging tool running on the host. It
should be possible to enable or disable this debugging code, and there may be additional configuration
options controlling the detailed behavior.

Altogether there may be something like ten to twenty configuration options that are specific to the mutex code.
There may be a similar number of additional options related to assertions and other debug facilities. All of the
options should have sensible default values, possibly fixed, possibly calculated depending on what is happening
elsewhere in the configuration. For example the default setting for an assertion option should generally inherit
from a kernel-wide assertion control option, which in turn inherits from a global option. This allows users to
enable or disable assertions globally or at a more fine-grained level, as desired.

Different components may be configurable to different degrees, ranging from no options at all to the fine-
grained configurability of the above mutex example (or possibly even further). It is up to component writers to
decide what options should be provided and how best to serve the needs of application developers who want
to use that component.

Warnings
Large parts of eCos were developed concurrently with the development of the configuration technology, or in
some cases before design work on that technology was complete. As a consequence the various eCos packages
often make only limited use of the available functionality. This situation is expected to change over time. It does
mean that many of the descriptions in this guide will not correspond exactly to how the eCos packages work
right now, but rather to how they could work. Some of the more extreme discrepancies such as the location of
on-line documentation in the component repository will be mentioned in the appropriate places in the guide.

A consequence of this is that developers of new components can look at existing CDL scripts for examples,
and discover discrepancies between what is recommended in this guide and what actually happens at present.
In such cases this guide should be treated as authoritative.

It is also worth noting that the current component framework is not finished. Various parts of this guide will
refer to possible changes and enhancements in future versions. Examining the source code of the configuration
tools may reveal hints about other likely developments, and there are many more possible enhancements which
only exist at a conceptual level right now.
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Chapter 2. Package Organization
For a package to be usable in the eCos component framework it must conform to certain rules imposed by that
framework. Packages must be distributed in a form that is understood by the component repository adminis-
tration tool. There must be a top-level CDL script which describes the package to the component framework.
There are certain limitations related to how a package gets built, so that the package can still be used in a variety
of host environments. In addition to these rules, the component framework provides a number of guidelines.
Packages do not have to conform to the guidelines, but sticking to them can simplify certain operations.

This chapter deals with the general organization of a package, for example how to distinguish between private
and exported header files.Chapter 3describes the CDL language.Chapter 4details the build process.

Packages and the Component Repository
All eCos installations include a component repository. This is a directory structure for all installed packages.
The component framework comes with an administration tool that allows new packages or new versions of a
package to be installed, old packages to be removed, and so on. The component repository includes a simple
database, maintained by the administration tool, which contains details of the various packages.

Each package has its own little directory hierarchy within the component repository. Keeping several packages
in a single directory is illegal. The error, infra and kernel packages all live at the top-level of the repository.
For other types of packages there are some pre-defined directories:compat is used for compatibility pack-
ages, which implement other interfaces such asµITRON or POSIX using native eCos calls;hal is used for
packages that port eCos to different architectures or platforms, and this directory is further organized on a
per-architecture basis;io is intended for device drivers;language is used for language support libraries, for
example the C library. There are no strict rules defining where new packages should get installed. Obviously
if an existing top-level directory such ascompat is applicable then the new package should go in there. If a
new category is desirable then it is possible to create a new sub-directory in the component repository. For
example, an organization planning to release a number of eCos packages may want them all to appear below
a sub-directory corresponding to the organization’s name — in the hope that the name will not change too
often. It is possible to add new packages directly to the top-level of the component repository, but this should
be avoided.

The ecos.db file holds the component repository database and is managed by the administration tool. The
various configuration tools read in this file when they start-up to obtain information about the various packages
that have been installed. When developing a new package it is necessary to add some information to the file,
as described inthe Section calledUpdating the ecos.db databasein Chapter 3. Thetemplates directory holds
various configuration templates.
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Note: Earlier releases of eCos came with two separate files, targets and packages . The ecos.db database
replaces both of these.

Caution
The current ecos.db database does not yet provide all of the information needed by
the component framework. Its format is subject to change in future releases, and the
file may be replaced completely if necessary. There are a number of other likely future
developments related to the component repository and the database. The way targets
are described is subject to change. Sometimes it is desirable for component writers to
do their initial development in a directory outside the component repository, but there is
no specific support in the framework for that yet.

Package Versioning
Below each package directory there can be one or more version sub-directories, named after the versions. This
is a requirement of the component framework: it must be possible for users to install multiple versions of a
package and select which one to use for any given application. This has a number of advantages to users: most
importantly it allows a single component repository to be shared between multiple users and multiple projects,
as required; also it facilitates experiments, for example it is relatively easy to try out the latest version of some
package and see if it makes any difference. There is a potential disadvantage in terms of disk space. However
since eCos packages generally consist of source code intended for small embedded systems, and given typical
modern disk sizes, keeping a number of different versions of a package installed will usually be acceptable.
The administration tool can be used to remove versions that are no longer required.

The versioncurrent is special. Typically it corresponds to the very latest version of the sources, obtained
by anonymous CVS. These sources may change frequently, unlike full releases which do not change (or only
when patches are produced). Component writers may also want to work on thecurrent version.

All other subdirectories of a package correspond to specific releases of that package. The component frame-
work allows users to select the particular version of a package they want to use, but by default the most recent
one will be used. This requires some rules for ordering version numbers, a difficult task because of the wide
variety of ways in which versions can be identified.

1. The versioncurrent is always considered to be the most recent version.

2. If the first character of both strings are eitherv or V, these are skipped because it makes little sense to
enforce case sensitivity here. Potentially this could result in ambiguity if there are two version directories
V1.0 andv1.0 , but this will match the confusion experienced by any users of such a package. However
if two subsequent releases are calledV1.0 andv1.1 , e.g. because of a minor mix-up when making the
distribution file, then the case difference is ignored.
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3. Next the two version strings are compared one character at a time. If both strings are currently at a digit
then a string to number conversion takes place, and the resulting numbers are compared. For examplev10

is a more recent release thanv2 . If the two numbers are the same then processing continues, so forv2b

andv2c the version comparison code would move on tob andc .

4. The characters dot. , hyphen- and underscore_ are treated as equivalent separators, so if one release goes
out asv1_1 and the next goes out asv1.2 the separator has no effect.

5. If neither string has yet terminated but the characters are different, ASCII comparison is used. For example
V1.1b is more recent thanv1.1alpha .

6. If one version string terminates before the other, the current character determines which is the more recent.
If the other string is currently at a separator character, for examplev1.3.1 andv1.3 , then the former is
assumed to be a minor release and hence more recent than the latter. If the other string is not at a separator
character, for examplev1.3beta , then it is treated as an experimental version of thev1.3 release and
hence older.

7. There is no special processing of dates, so with two versionsss-20000316 andss-20001111 the numeri-
cal values20001111 and20000316 determine the result: larger values are more recent. It is suggested that
the full year be used in such cases rather than a shorthand like00, to avoid Y2100 problems.

8. There is no limit on how many levels of versioning are used, so there could in theory be a
v3.1.4.1.5.9.2.7 release of a package. However this is unlikely to be of benefit to typical users of a
package.

The version comparison rules of the component framework may not be suitable for every version numbering
scheme in existence, but they should cope with many common cases.

Caution
There are some issues still to be resolved before it is possible to combine the current

sources available via anonymous CVS and full releases of eCos and additional packages
in a single component repository. The first problem relates to the ecos.db database: if
a new package is added via the CVS repository then this requires a database update,
but the administration tool is bypassed. The second problem arises if an organization
chooses to place its component repository under source code control using CVS, in
which case different directories will belong to different CVS servers. These issues will
be addressed in a future release.

Package Contents and Layout
A typical package contains the following:

1. Some number of source files which will end up in a library. The application code will be linked with this
library to produce an executable. Some source files may serve other purposes, for example to provide a
linker script.

2. Exported header files which define the interface provided by the package.

3. On-line documentation, for example reference pages for each exported function.

4. Some number of test cases, shipped in source format, allowing users to check that the package is working
as expected on their particular hardware and in their specific configuration.

5. One or more CDL scripts describing the package to the configuration system.
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It is also conventional to have a per-packageChangeLog file used to keep track of changes to that package.
This is especially valuable to end users of the package who may not have convenient access to the source code
control system used to manage the master copy of the package, and hence cannot find out easily what has
changed. Often it can be very useful to the main developers as well.

Any given packages need not contain all of these. It is compulsory to have at least one CDL script describing
the package, otherwise the component framework would be unable to process it. Some packages may not have
any source code: it is possible to have a package that merely defines a common interface which can then be
implemented by several other packages, especially in the context of device drivers; however it is still common
to have some code in such packages to avoid replicating shareable code in all of the implementation packages.
Similarly it is possible to have a package with no exported header files, just source code that implements an
existing interface: for example an ethernet device driver might just implement a standard interface and not
provide any additional functionality. Packages do not need to come with any on-line documentation, although
this may affect how many people will want to use the package. Much the same applies to per-package test
cases.

The component framework has a recommended per-package directory layout which splits the package contents
on a functional basis:

For example, if a package has aninclude sub-directory then the component framework will assume that all
header files in and below that directory are exported header files and will do the right thing at build time. Sim-
ilarly if there is doc property indicating the location of on-line documentation then the component framework
will first look in the doc sub-directory.

This directory layout is just a guideline, it is not enforced by the component framework. For simple packages
it often makes more sense to have all of the files in just one directory. For example a package could just contain
the fileshello.cxx , hello.h , hello.html andhello.cdl . By defaulthello.h will be treated as an exported
header file, although this can be overridden with theinclude_filesproperty. Assuming there is a doc property
referring tohello.html and there is nodoc sub-directory then the tools will search for this file relative to the
package’s top-level and everything will just work. Much the same applies tohello.cxx andhello.cdl .

Tip: Older versions of the eCos build system only supported packages that followed the directory structure
exactly. Hence certain core packages such as error implement the full directory structure, even though
that is a particularly simple package and the full directory structure is inappropriate. Component writers can
decide for themselves whether or not the directory structure guidelines are appropriate for their package.

Outline of the Build Process

The full build process is described inChapter 4, but a summary is appropriate here. A build involves three
directory structures:
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1. The component repository. This is where all the package source code is held, along with CDL scripts,
documentation, and so on. For build purposes a component repository is read-only. Application developers
will only modify the component repository when installing or removing packages, via the administration
tool. Component writers will typically work on just one package in the component repository.

2. The build tree. Each configuration has its own build tree, which can be regenerated at any time using the
configuration’secos.ecc savefile. The build tree contains only intermediate files, primarily object files.
Once a build is complete the build tree contains no information that is useful for application development
and can be wiped, although this would slow down any rebuilds following changes to the configuration.

3. The install tree. This is populated during a build, and contains all the files relevant to application devel-
opment. There will be alib sub-directory which typically containslibtarget.a , a linker script, start-up
code, and so on. There will also be aninclude sub-directory containing all the header files exported by
the various packages. There will also be ainclude/pkgconf sub-directory containing various configura-
tion header files with#define’s for the options. Typically the install tree is created within the build tree,
but this is not a requirement.

The build process involves the following steps:

1. Given a configuration, the component framework is responsible for creating all the directories in the build
and install trees. If these trees already exist then the component framework is responsible for any clean-ups
that may be necessary, for example if a package has been removed then all related files should be expunged
from the build and install trees. The configuration header files will be generated at this time. Depending
on the host environment, the component framework will also generate makefiles or some other way of
building the various packages. Every time the configuration is modified this step needs to be repeated,
to ensure that all option consequences take effect. Care is taken that this will not result in unnecessary
rebuilds.

Note: At present this step needs to be invoked manually. In a future version the generated makefile
may if desired perform this step automatically, using a dependency on the ecos.ecc savefile.

2. The first step in an actual build is to make sure that the install tree contains all exported header files. All
compilations will use the install tree’sinclude directory as one of the places to search for header files.

3. All source files relevant to the current configuration get compiled. This involves a set of compiler flags
initialized on a per-target basis, with each package being able to modify these flags, and with the ability for
the user to override the flags as well. Care has to be taken here to avoid inappropriate target-dependencies
in packages that are intended to be portable. The component framework has built-in knowledge of how
to handle C, C++ and assembler source files — other languages may be added in future, as and when
necessary. Thecompileproperty is used to list the files that should get compiled. All object files end up in
the build tree.

4. Once all the object files have been built they are collected into a library, typicallylibtarget.a , which
can then be linked with application code. The library is generated in the install tree.

5. The component framework provides support for custom build steps, using themake_objectand make
properties. The results of these custom build steps can either be object files that should end up in a library,
or other files such as a linker script. It is possible to control the order in which these custom build steps
take place, for example it is possible to run a particular build step before any of the compilations happen.
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Configurable Source Code

All packages should be totally portable to all target hardware (with the obvious exceptions of HAL and device
driver packages). They should also be totally bug-free, require the absolute minimum amount of code and
data space, be so efficient that cpu time usage is negligible, and provide lots of configuration options so that
application developers have full control over the behavior. The configuration options are optional only if a
package can meet the requirements of every potential application without any overheads. It is not the purpose
of this guide to explain how to achieve all of these requirements.

The eCos component framework does have some important implications for the source code: compiler flag
dependencies; package interfaces vs. implementations; and how configuration options affect source code.

Compiler Flag Dependencies

Wherever possible component writers should avoid dependencies on particular compiler flags. Any such de-
pendencies are likely to impact portability. For example, if one package needs to be built in big-endian mode
and another package needs to be built in little-endian mode then usually it will not be possible for application
developers to use both packages at the same time; in addition the application developer is no longer given a
choice in the matter. It is far better for the package source code to adapt the endianness at compile-time, or
possibly at run-time although that will involve code-size overheads.

Note: A related issue is that the current support for handling compiler flags in the component framework
is still limited and incapable of handling flags at a very fine-grain. The support is likely to be enhanced in
future versions of the framework, but there are non-trivial problems to be resolved.

Package Interfaces and Implementations

The component framework provides encapsulation at the package level. A packageA has no way of accessing
the implementation details of another packageB at compile-time. In particular, if there is a private header file
somewhere in a package’ssrc sub-directory then this header file is completely invisible to other packages. Any
attempts to cheat by using relative pathnames beginning with../.. are generally doomed to failure because
of the presence of package version directories. There are two ways in which one package can affect another:
by means of the exported header files, which define a public interface; or via the CDL scripts.

This encapsulation is a deliberate aspect of the overall eCos component framework design. In most cases it does
not cause any problems for component writers. In some cases enforcing a clean separation between interface
and implementation details can improve the code. Also it reduces problems when a package gets upgraded:
component writers are free to do pretty much anything on the implementation side, including renaming every
single source file; care has to be taken only with the exported header files and with the CDL data, because
those have the potential of impacting other packages. Application code is similarly unable to access package
implementation details, only the exported interface.

Very occasionally the inability of one package to see implementation details of another does cause problems.
One example occurs in HAL packages, where it may be desirable for the architectural, variant and platform
HAL’s to share some information that should not be visible to other packages or to application code. This may
be addressed in the future by introducing the concept offriend packages, just as a C++ class can havefriend

functions and classes which are allowed special access to a class internals. It is not yet clear whether such cases
are sufficiently frequent to warrant introducing such a facility.
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Source Code and Configuration Options

Configurability usually involves source code that needs to implement different behavior depending on the
settings of configuration options. It is possible to write packages where the only consequence associated with
various configuration options is to control what gets built, but this approach is limited and does not allow for
fine-grained configurability. There are three main ways in which options could affect source code at build time:

1. The component code can be passed through a suitable preprocessor, either an existing one such as m4
or a new one specially designed with configurability in mind. The original sources would reside in the
component repository and the processed sources would reside in the build tree. These processed sources
can then be compiled in the usual way.

This approach has two main advantages. First, it is independent from the programming language used to
code the components, provided reasonable precautions are taken to avoid syntax clashes between prepro-
cessor statements and actual code. This would make it easier in future to support languages other than
C and C++. Second, configurable code can make use of advanced preprocessing facilities such as loops
and recursion. The disadvantage is that component writers would have to learn about a new preprocessor
and embed appropriate directives in the code. This makes it much more difficult to turn existing code into
components, and it involves extra training costs for the component writers.

2. Compiler optimizations can be used to elide code that should not be present, for example:

...
if (CYGHWR_NUMBER_UARTS> 0) {

...
}

...

If the compiler knows thatCYGHWR_NUMBER_UARTSis the constant number 0 then it is a trivial operation to
get rid of the unnecessary code. The component framework still has to define this symbol in a way that is
acceptable to the compiler, typically by using aconst variable or a preprocessor symbol. In some respects
this is a clean approach to configurability, but it has limitations. It cannot be used in the declarations
of data structures or classes, nor does it provide control over entire functions. In addition it may not be
immediately obvious that this code is affected by configuration options, which may make it more difficult
to understand.

3. Existing language preprocessors can be used. In the case of C or C++ this would be the standard C pre-
processor, and configurable code would contain a number of#ifdef and#if statements.

#if (CYGHWR_NUMBER_UARTS> 0)
...

#endif

This approach has the big advantage that the C preprocessor is a technology that is both well-understood
and widely used. There are also disadvantages: it is not directly applicable to components written in
other languages such as Java (although it is possible to use the C preprocessor as a stand-alone program);
the preprocessing facilities are rather limited, for example there is no looping facility; and some people
consider the technology to be ugly. Of course it may be possible to get around the second objection by
extending the preprocessor that is used by gcc and g++.

The current component framework generates configuration header files with C preprocessor#define’s for
each option (typically, there various properties which can be used to control this). It is up to component writers
to decide whether to use preprocessor#ifdef statements or language constructs such asif . At present there
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is no support for languages which do not involve the C preprocessor, although such support can be added in
future when the need arises.

Exported Header Files

A package’s exported header files should specify the interface provided by that package, and avoid any imple-
mentation details. However there may be performance or other reasons why implementation details occasion-
ally need to be present in the exported headers.

Note: Not all programming languages have the concept of a header file. In some cases the component
framework would need extensions to support packages written in such languages.

Configurability has a number of effects on the way exported header files should be written. There may be
configuration options which affect the interface of a package, not just the implementation. It is necessary to
worry about nested#include’s and how this affects package and application builds. A special case of this
relates to whether or not exported header files should#include configuration headers. These configuration
headers are exported, but should only be#include’d when necessary.

Configurable Functionality

Many configuration options affect only the implementation of a package, not the interface. However some
options will affect the interface as well, which means that the options have to be tested in the exported header
files. Some implementation choices, for example whether or not a particular function should be inlined, also
need to be tested in the header file because of language limitations.

Consider a configuration optionCYGFUN_KERNEL_MUTEX_TIMEDLOCKwhich controls whether or not a function
cyg_mutex_timedlock is provided. The exported kernel header filecyg/kernel/kapi.h could contain the
following:

#include <pkgconf/kernel.h >

...
#ifdef CYGFUN_KERNEL_MUTEX_TIMEDLOCK
extern bool cyg_mutex_timedlock(cyg_mutex_t*);
#endif

This is a correct header file, in that it defines the exact interface provided by the package at all times. However
is has a number of implications. First, the header file is now dependent onpkgconf/kernel.h , so any changes
to kernel configuration options will causecyg/kernel/kapi.h to be out of date, and any source files that use
the kernel interface will need rebuilding. This may affect sources in the kernel package, in other packages, and
in application source code. Second, if the application makes use of this function somewhere but the applica-
tion developer has misconfigured the system and disabled this functionality anyway then there will now be a
compile-time error when building the application. Note that other packages should not be affected, since they
should impose appropriate constraints onCYGFUN_KERNEL_MUTEX_TIMEDLOCKif they use that functionality
(although of course some dependencies like this may get missed by component developers).

An alternative approach would be:

extern bool cyg_mutex_timedlock(cyg_mutex_t*);

Effectively the header file is now lying about the functionality provided by the package. The first result is that
there is no longer a dependency on the kernel configuration header. The second result is that an application
file using the timed-lock function will now compile, but the application will fail to link. At this stage the
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application developer still has to intervene, change the configuration, and rebuild the system. However no
application recompilations are necessary, just a relink.

Theoretically it would be possible for a tool to analyze linker errors and suggest possible configuration changes
that would resolve the problem, reducing the burden on the application developer. No such tool is planned in
the short term.

It is up to component writers to decide which of these two approaches should be preferred. Note that it is not
always possible to avoid#include’ing a configuration header file in an exported one, for example an option
may affect a data structure rather than just the presence or absence of a function. Issues like this will vary from
package to package.

Nested #include’s

As a general rule, unnecessary#include’s should be avoided. A header file should#include only those
header files which are absolutely needed for it to define its interface. Any additional#include’s make it more
likely that package or application source files become dependent on configuration header files and will get
rebuilt unnecessarily when there are minor configuration changes.

Including Configuration Headers

Exported header files should avoid#include’ing configuration header files unless absolutely necessary, to
avoid unnecessary rebuilding of both application code and other packages when there are minor configuration
changes. A#include is needed only when a configuration option affects the exported interface, or when it
affects some implementation details which is controlled by the header file such as whether or not a particular
function gets inlined.

There are a couple of ways in which the problem of unnecessary rebuilding could be addressed. The first would
require more intelligent handling of header file dependency handling by the tools (especially the compiler) and
the build system. This would require changes to various non-eCos tools. An alternative approach would be to
support finer-grained configuration header files, for example there could be a filepkgconf/libc/inline.h

controlling which functions should be inlined. This could be achieved by some fairly simple extensions to the
component framework, but it makes it more difficult to get the package header files and source code correct: a
C preprocessor#ifdef directive does not distinguish between a symbol not being defined because the option
is disabled, or the symbol not being defined because the appropriate configuration header file has not been
#include’d . It is likely that a cross-referencing tool would have to be developed first to catch problems like
this, before the component framework could support finer-grained configuration headers.

Package Documentation

On-line package documentation should be in HTML format. The component framework imposes no special
limitations: component writers can decide which version of the HTML specification should be followed; they
can also decide on how best to cope with the limitations of different browsers. In general it is a good idea to
keep things simple.

Test Cases

Packages should normally come with one or more test cases. This allows application developers to verify that
a given package works correctly on their particular hardware and in their particular configuration, making it
slightly more likely that they will attempt to find bugs in their own code rather than automatically blaming the
component writers.
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At the time of writing the application developer support for building and running test cases via the component
framework is under review and likely to change. Currently each test case should consist of a single C or
C++ source file that can be compiled with the package’s set of compiler flags and linked like any application
program. Each test case should use the testing API defined by the infrastructure. A magically-named calculated
configuration option of the formCYGPKG_<PACKAGE-NAME>_TESTS lists the test cases.

Host-side Support

On occasion it would be useful for an eCos package to be shipped with host-side support. This could take the
form of an additional tool needed to build that package. It could be an application intended to communicate
with the target-side package code and display monitoring information. It could be a utility needed for running
the package test cases, especially in the case of device drivers. The component framework does not yet provide
any such support for host-side software, and there are obvious issues related to portability to the different
machines that can be used for hosts. This issue may get addressed in some future release. In some cases
custom build steps can be subverted to do things on the host side rather than the target side, but this is not
recommended.

Making a Package Distribution
Developers of new eCos packages are advised to distribute their packages in the form of eCos package distribu-
tion files. Packages distributed in this format may be added to existing eCos component repositories in a robust
manner using the Package Administration Tool. This chapter describes the format of package distribution files
and details how to prepare an eCos package for distribution in this format.

The eCos package distribution file format

eCos package distribution files are gzipped GNU tar archives which contain both the source code for one or
more eCos packages and a data file containing package information to be added to the component repository
database. The distribution files are subject to the following rules:

a.The data file must be namedpkgadd.db and must be located in the root of the tar archive. It must con-
tain data in a format suitable for appending to the eCos repository database (ecos.db).the Section called
Updating the ecos.db databasein Chapter 3describes this data format. Note that a database consistency
check is performed by the eCos Administration Tool whenpkgadd.db has been appended to the database.
Any new target entries which refer to unknown packages will be removed at this stage.

b. The package source code must be placed in one or more<package-path >/ <version > directories in the
tar archive, where each<package-path> directory path is specified as the directory attribute of one of the
packages entries inpkgadd.db .

c. An optional license agreement file namedpkgadd.txt may be placed in the root of the tar archive. It
should contain text with a maximum line length of 79 characters. If this file exists, the contents will
be presented to the user during installation of the package. The eCos Package Administration Tool will
then prompt the user with the question"Do you accept all the terms of the preceding license

agreement?" . The user must respond"yes" to this prompt in order to proceed with the installation.

d. Optional template files may be placed in one or moretemplates/ <template_name > directories in the
tar archive. Note that such template files would be appropriate only where the packages to be distributed
have a complex dependency relationship with other packages. Typically, a third party package can be
simply added to an eCos configuration based on an existing core template and the provision of new tem-
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plates would not be appropriate.the Section calledTemplatesin Chapter 6contains more information on
templates.

e.The distribution file must be given a.epk (not .tar.gz ) file extension. The.epk file extension serves to
distinguish eCos package distributions files from generic gzipped GNU tar archives. It also discourages
users from attempting to extract the package from the archive manually. The file browsing dialog of the
eCos Package Administration Tool lists only those files which have a.epk extension.

f. No other files should be present in the archive.

g. Files in the tar archive may useLF or CRLF line endings interchangably. The eCos Administration Tool
ensures that the installed files are given the appropriate host-specific line endings.

h. Binary files may be placed in the archive, but the distribution of object code is not recommended. All
binary files must be given a.bin suffix in addition to any file extension they may already have. For
example, the GIF image filemyfile.gif must be namedmyfile.gif.bin in the archive. The.bin suffix
is removed during file extraction and is used to inhibit the manipulation of line endings by the eCos
Administration Tool.

Preparing eCos packages for distribution

Development of new eCos packages or new versions of existing eCos packages will take place in the context of
an existing eCos component repository. This section details the steps involved in extracting new packages from
a repository and generating a corresponding eCos package distribution file for distribution of the packages to
other eCos users. The steps required are as follows:

a.Create a temporary directory$PKGTMPfor manipulation of the package distribution file contents and copy
the source files of the new packages into this directory, preserving the relative path to the package. In the
case of a new package atmypkg/current in the repository:

$ mkdir -p $PKGTMP/mypkg
$ cp -p -R $ECOS_REPOSITORY/mypkg/current $PKGTMP/mypkg

Where more than one package is to be distributed in a single package distribution file, copy each package
in the above manner. Note that multiple packages distributed in a single package distribution file cannot
be installed separately. Where such flexibility is required, distribution of each new package in separate
package distribution files is recommended.

b. Copy any template files associated with the distributed packages into the temporary directory, preserving
the relative path to the template. For example:

$ mkdir -p $PKGTMP/templates
$ cp -p -R $ECOS_REPOSITORY/templates/mytemplate $PKGTMP/templates

c. Remove any files from the temporary directory hierarchy which you do not want to distribute with the
packages (eg object files,CVSdirectories).

d. Add a .bin suffix to the name of any binary files. For example, if the packages contains GIF image files
(*.gif) for documentation purposes, such files must be renamed to *.gif.bin as follows:

$ find $PKGTMP -type f -name ’*.gif’ -exec mv {} {}.bin ’;’

The .bin suffix is removed during file extraction and is used to inhibit the manipulation of line endings
by the eCos Package Administration Tool.
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e.Extract the package records for the new packages from the package database file at
$ECOS_REPOSITORY/ecos.db and create a new file containing these records at$PKGTMP/pkgadd.db

(in the root of the temporary directory hierarchy). Any target records which reference the distributed
packages must also be provided in pkgadd.db.

f. Rename the version directories under$PKGTMP(typically current during development) to reflect the
versions of the packages you are distributing. For example, version 1.0 of a package may use the version
directory namev1_0 :

$ cd $PKGTMP/mypkg
$ mv current v1_0

the Section calledPackage Versioningdescribes the version naming conventions.

g. Rename any template files under$PKGTMP(typically current.ect during development) to reflect the
version of the template you are distributing. For example, version 1.0 of a template may use the filename
v1_0.ect :

$ cd $PKGTMP/templates/mytemplate
$ mv current.ect v1_0.ect

It is also important to edit the contents of the template file, changing the version of each referenced package
to match that of the packages you are distributing. This step will eliminate version warnings during the
subsequent loading of the template.

h. Optionally create a licence agreement file at$PKGTMP/pkgadd.txt containing the licensing terms under
which you are distributing the new packages. Limit each line in this file to a maximum of 79 characters.

i. Create a GNU tar archive of the temporary directory hierarchy. By convention, this archive would have a
name of the form<package_name >- <version >:

$ cd $PKGTMP
$ tar cf mypkg-1.0.tar *

Note that non-GNU version of tar may create archive files which exhibit subtle incompatibilities with
GNU tar. For this reason, always use GNU tar to create the archive file.

j. Compress the archive using gzip and give the resulting file a.epk file extension:

$ gzip mypkg-1.0.tar
$ mv mypkg-1.0.tar.gz mypkg-1.0.epk

The resulting eCos package distribution file (*.epk) is in a compressed format and may be distributed
without further compression.
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The CDL language is a key part of the eCos component framework. All packages must come with at least one
CDL script, to describe that package to the framework. The information in that script includes details of all the
configuration options and how to build the package. Implementing a new component or turning some existing
code into an eCos component always involves writing corresponding CDL. This chapter provides a description
of the CDL language. Detailed information on specific parts of the language can be found inChapter 5.

Language Overview
A very simple CDL script would look like this:

cdl_package CYGPKG_ERROR {
display "Common error code support"
compile strerror.cxx
include_dir cyg/error
description "

This package contains the common list of error and
status codes. It is held centrally to allow
packages to interchange error codes and status
codes in a common way, rather than each package
having its own conventions for error/status
reporting. The error codes are modelled on the
POSIX style naming e.g. EINVAL etc. This package
also provides the standard strerror() function to
convert error codes to textual representation."

}

This describes a single package, the error code package, which does not have any sub-components or con-
figuration options. The package has an internal name,CYGPKG_ERROR, which can be referenced in other CDL
scripts using e.g.requires CYGPKG_ERROR. There will also be a#define for this symbol in a configuration
header file. In addition to the package name, this script provides a number of properties for the package as
a whole. The display property provides a short description. The description property involves a rather longer
one, for when users need a bit more information. The compile and include_dir properties list the consequences
of this package at build-time. The package appears to lack any on-line documentation.

Packages could be even simpler than this. If the package only provides an interface and there are no files to
be compiled then there is no need for a compile property. Alternatively if there are no exported header files,
or if the exported header files should go to the top-level of theinstall/include directory, then there is no
need for an include_dir property. Strictly speaking the description and display properties are optional as well,
although application developers would not appreciate the resulting lack of information about what the package
is supposed to do.

However many packages tend to be a bit more complicated than the error package, containing various sub-
components and configuration options. These are also defined in the CDL scripts and in much the same way
as the package. For example, the following excerpt comes from the infrastructure package:

cdl_component CYGDBG_INFRA_DEBUG_TRACE_ASSERT_BUFFER {
display "Buffered tracing"
default_value 1
active_if CYGDBG_USE_TRACING
description "

An output module which buffers output from tracing and
assertion events. The stored messages are output when an
assert fires, or CYG_TRACE_PRINT() (defined in
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<cyg/infra/cyg_trac.h >) is called. Of course, there will
only be stored messages if tracing per se (CYGDBG_USE_TRACING)
is enabled above."

cdl_option CYGDBG_INFRA_DEBUG_TRACE_BUFFER_SIZE {
display "Trace buffer size"
flavor data
default_value 32
legal_values 5 to 65535
description "

The size of the trace buffer. This counts the number of
trace records stored. When the buffer fills it either
wraps, stops recording, or generates output."

}

...
}

Like a cdl_package , acdl_component has a name and a body. The body contains various properties for that
component, and may also contain sub-components or options. Similarly acdl_option has a name and a body
of properties. This example lists a number of new properties: default_value, active_if, flavor and legal_values.
The meaning of most of these should be fairly obvious. The next sections describe the various CDL commands
and properties.

There is one additional and very important point: CDL is not a completely new language; instead it is imple-
mented as an extension of the existing Tcl scripting language. The syntax of a CDL script is Tcl syntax, which
is described below. In addition some of the more advanced facilities of CDL involve embedded fragments of
Tcl code, for example there is a define_proc property which specifies some code that needs to be executed
when the component framework generates the configuration header files.

CDL Commands
There are four CDL-related commands which can occur at the top-level of a CDL script:cdl_package ,
cdl_component , cdl_option andcdl_interface . These correspond to the basic building blocks of the lan-
guage (CDL interfaces are described inthe Section calledInterfaces). All of these take the same basic form:

cdl_package <name> {
...

}

cdl_component <name> {
...

}

cdl_option <name> {
...

}

cdl_interface <name> {
...

}

The command is followed by a name and by a body of properties, the latter enclosed in braces. Packages
and components can contain other entities, so thecdl_package and cdl_component can also have nested
commands in their bodies. All names must be unique within a given configuration. If say the C library package
and a TCP/IP stack both defined an option with the same name then it would not be possible to load both of

22



Chapter 3. The CDL Language

them into a single configuration. There is anaming conventionwhich should make accidental name clashes
very unlikely.

It is possible for two packages to use the same name if there are no reasonable circumstances under which
both packages could be loaded at the same time. One example would be architectural HAL packages: a given
eCos configuration can be used on only one processor, so the architectural HAL packagesCYGPKG_HAL_ARM

andCYGPKG_HAL_I386can re-use option names; in fact in some cases they are expected to.

Each package has one top-level CDL script, which is specified in the packagesecos.db database entry. Typi-
cally the name of this top-level script is related to the package, so the kernel package useskernel.cdl , but
this is just a convention. The first command in the top-level script should becdl_package , and the name used
should be the same as in the ecos.db database. There should be only onecdl_package command per package.

The various CDL entities live in a hierarchy. For example the kernel package contains a scheduling component,
a synchronization primitives component, and a number of others. The synchronization component contains
various options such as whether or not mutex priority inheritance is enabled. There is no upper bound on how
far components can be nested, but it is rarely necessary to go more than three or four levels deeper than the
package level. Since the naming convention incorporates bits of the hierarchy, this has the added advantage of
keeping the names down to a more manageable size.

The hierarchy serves two purposes. It allows options to be controlled en masse, so disabling a component
automatically disables all the options below it in the hierarchy. It also permits a much simpler representation
of the configuration in the graphical configuration tool, facilitating navigation and modification.

By default a package is placed at the top-level of the hierarchy, but it is possible to override this using a
parent property. For example an architectural HAL package such asCYGPKG_HAL_SHtypically re-parents itself
below CYGPKG_HAL, and a platform HAL package would then re-parent itself below the architectural HAL.
This makes it a little bit easier for users to navigate around the hierarchy. Components, options and interfaces
can also be re-parented, but this is less common.

All components, options and interfaces that are defined directly in the top-level script will be placed below
the package in the hierarchy. Alternatively they can be nested in the body of thecdl_package command. The
following two script fragments are equivalent:

cdl_package CYGPKG_LIBC {
...

}

cdl_component CYGPKG_LIBC_STRING {
...

}

cdl_option CYGPKG_LIBC_CTYPE_INLINES {
...

}

and:

cdl_package CYGPKG_LIBC {
...

cdl_component CYGPKG_LIBC_STRING {
...

}

cdl_option CYGPKG_LIBC_CTYPE_INLINES {
...

}
}
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If a script defines options both inside and outside the body of thecdl_package then the ones inside will
be processed first. Language purists may argue that it would have been better if all contained options and
components had to go into the body, but in practice it is often convenient to be able to skip this level of nesting
and the resulting behavior is still well-defined.

Components can also contain options and other CDL entities, in fact that is what distinguishes them from
options. These can be defined in the body of thecdl_component command:

cdl_component CYGPKG_LIBC_STDIO {

cdl_component CYGPKG_LIBC_STDIO_FLOATING_POINT {
...

}

cdl_option CYGSEM_LIBC_STDIO_THREAD_SAFE_STREAMS {
...

}
}

Nesting options inside the bodies of components like this is fine for simple packages with only a limited
number of configuration options, but it becomes unsatisfactory as the number of options increases. Instead it is
possible to split the CDL data into multiple CDL scripts, on a per-component basis. The script property should
be used for this. For example, in the case of the C library all stdio-related configuration options could be put
into stdio.cdl , and the top-level CDL scriptlibc.cdl would contain the following:

cdl_package CYGPKG_LIBC {
...

cdl_component CYGPKG_LIBC_STDIO {
...
script stdio.cdl

}
}

The CYGPKG_LIBC_STDIO_FLOATING_POINT component and the
CYGSEM_LIBC_STDIO_THREAD_SAFE_STREAMSoption can then be placed at the top-level
of stdio.cdl . It is possible to have some options nested in the body of acdl_component command and other
options in a separate file accessed by the script property. In such a case the nested options would be processed
first, and then the other script would be read in. A script specified by a script property should only define new
options, components or interfaces: it should not contain any additional properties for the current component.

It is possible for a component’s CDL script to have a sub-component which also has a script property, and
so on. In practice excessive nesting like this is rarely useful. It is also possible to ignore the CDL language
support for constructing hierarchies automatically and use the parent property explicitly for every single option
and component. Again this is not generally useful.

Note: At the time of writing interfaces cannot act as containers. This may change in a future version of the
component framework. If the change is made then interfaces would support the script property, just like
components.
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CDL Properties
Each package, component, option, and interface has a body of properties, which provide the component frame-
work with information about how to handle each option. For example there is a property for a descriptive text
message which can be displayed to a user who is trying to figure out just what effect manipulating the option
would have on the target application. There is another property for the default value, for example whether a
particular option should be enabled or disabled by default.

All of the properties are optional, it is legal to define a configuration option which has an empty body. However
some properties are more optional than others: users will not appreciate having to manipulate an option if they
are not given any sort of description or documentation. Other properties are intended only for very specific
purposes, for example make_object and include_files, and are used only rarely.

Because different properties serve very different purposes, their syntax is not as uniform as the top-level com-
mands. Some properties take no arguments at all. Other properties take a single argument such as a description
string, or a list of arguments such as a compile property which specifies the file or files that should be compiled
if a given option is active and enabled. The define_proc property takes as argument a snippet of Tcl code. The
active_if, calculated, default_value, legal_values and requires properties take various expressions. Additional
properties may be defined in future which take new kinds of arguments.

All property parsing code supports options for every property, although at present the majority of properties do
not yet take any options. Any initial arguments that begin with a hyphen character- will be interpreted as an
option, for example:

cdl_package CYGPKG_HAL_ARM {
...
make -priority 1 {

...
}

}

If the option involves additional data, as for the-priority example above, then this can be written as either
-priority=1 or as-priority 1 . On occasion the option parsing code can get in the way, for example:

cdl_option CYGNUM_LIBC_TIME_DST_DEFAULT_STATE {
...
legal_values -1 to 1
default_value -1

}

Neither the legal_values nor the default_value property will accept-1 as a valid option, so this will result in
syntax errors when the CDL script is read in by the component framework. To avoid problems, the option
parsing code will recognize the string-- and will not attempt to interpret any subsequent arguments. Hence
this option should be written as:

cdl_option CYGNUM_LIBC_TIME_DST_DEFAULT_STATE {
...
legal_values -- -1 to 1
default_value -- -1

}

The property parsing code involves a recursive invocation of the Tcl interpreter that is used to parse the top-
level commands. This means that some characters in the body of an option will be treated specially. The#

character can be used for comments. The backslash character\ , the dollar character$, square brackets[ and
] , braces{ and } , and the quote character" may all receive special treatment. Most of the time this is not
a problem because these characters are not useful for most properties. On occasion having a Tcl interpreter
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around performing the parser can be very powerful. For more details of how the presence of a Tcl interpreter
can affect CDL scripts, seethe Section calledAn Introduction to Tcl.

Many of the properties can be used in any ofcdl_package , cdl_component , cdl_option or cdl_interface .
Other properties are more specific. The script property is only relevant to components. The define_header,
hardware, include_dir, include_files, and library properties apply to a package as a whole, so can only occur
in the body of acdl_package command. The calculated, default_value, legal_values and flavor properties are
not relevant to packages, as will be explained later. The calculated and default_value properties are also not
relevant to interfaces.

This section lists the various properties, grouped by purpose. Each property also has a full reference page in
Chapter 5. Properties related to values and expressions are described in more detail inthe Section calledValues
and Expressions. Properties related to header file generation and to the build process are described inChapter
4.

Information-providing Properties

Users can only be expected to manipulate configuration options sensibly if they are given sufficient informa-
tion about these options. There are three properties which serve to explain an option in plain text: thedisplay
property gives a textual alias for an option, which is usually more comprehensible than something likeCYG-

PKG_LIBC_TIME_ZONES‘; thedescriptionproperty gives a longer description, typically a paragraph or so; the
docproperty specifies the location of additional on-line documentation related to a configuration option. In the
context of a graphical tool the display string will be the primary way for users to identify configuration options;
the description paragraph will be visible whenever the option is selected; the on-line documentation will only
be accessed when the user explicitly requests it.

cdl_package CYGPKG_UITRON {
display "uITRON compatibility layer"
doc ref/ecos-ref.a.html
description "

eCos supports a uITRON Compatibility Layer, providing
full Level S (Standard) compliance with Version 3.02 of
the uITRON Standard, plus many Level E (Extended) features.
uITRON is the premier Japanese embedded RTOS standard."

...
}

All three properties take a single argument. For display and description this argument is just a string. For doc
it should be a pointer to a suitable HTML file, optionally including an anchor within that page. If thedirectory
layout conventionsare observed then the component framework will look for the HTML file in the package’s
doc sub-directory, otherwise the doc filename will be treated as relative to the package’s top-level directory.

The Configuration Hierarchy

There are two properties related to the hierarchical organization of components and options:parentandscript.

The parent property can be used to move a CDL entity somewhere else in the hierarchy. The most common
use is for packages, to avoid having all the packages appear at the top-level of the configuration hierarchy. For
example an architectural HAL package such asCYGPKG_HAL_SHis placed below the common HAL package
CYGPKG_HALusing a parent property.

cdl_package CYGPKG_HAL_SH {
display "SH architecture"
parent CYGPKG_HAL
...
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}

The parent property can also be used in the body of acdl_component , cdl_option or cdl_interface , but this
is less common. However care has to be taken since excessive re-parenting can be confusing. Care also has to
be taken when reparenting below some other package that may not actually be loaded in a given configuration,
since the resulting behavior is undefined.

As a special case, if the parent is the empty string then the CDL entity is placed at the root of the hierarchy.
This is useful for global preferences, default compiler flags, and other settings that may affect every package.

The script property can only be used in the body of acdl_component command. The property takes a single
filename as argument, and this should be another CDL script containing additional options, sub-components
and interfaces that should go below the current component in the hierarchy. If thedirectory layout conventions
are observed then the component framework will look for the specified file relative to thecdl subdirectory of
the package, otherwise the filename will be treated as relative to the package’s top-level directory.

cdl_component CYGPKG_LIBC_STDIO {
display "Standard input/output functions"
flavor bool
requires CYGPKG_IO
requires CYGPKG_IO_SERIAL_HALDIAG
default_value 1
description "

This enables support for standard I/O functions from <stdio.h >."

script stdio.cdl
}

Value-related Properties

There are seven properties which are related to option values and state:flavor, calculated, default_value, le-
gal_values, active_if, implements, andrequires. More detailed information can be found inthe Section called
Values and Expressions.

In the context of configurability, the concept of an option’s value is somewhat non-trivial. First an
option may or may not be loaded: it is possible to build a configuration which has the math library
but not the kernel; however the math library’s CDL scripts still reference kernel options, for example
CYGSEM_LIBM_THREAD_SAFE_COMPAT_MODEhas a requires constraint onCYGVAR_KERNEL_THREADS_DATA.
Even if an option is loaded it may or may not be active, depending on what is happening higher up in
the hierarchy: if the C library’sCYGPKG_LIBC_STDIO component is disabled then some other options
such asCYGNUM_LIBC_STDIO_BUFSIZEbecome irrelevant. In addition each option has both a boolean
enabled/disabled flag and a data part. For many options only the boolean flag is of interest, while for others
only the data part is of interest. The flavor property can be used to control this:

flavor none

This flavor indicates that neither the boolean nor the data parts are user-modifiable: the option is always
enabled and the data is always set to1. The most common use for this is to have a component that just
acts as a placeholder in the hierarchy, allowing various options to be grouped below it.

flavor bool

Only the boolean part of the option is user-modifiable. The data part is fixed at1.
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flavor data

Only the data part of the option is user-modifiable. The boolean part is fixed at enabled.

flavor booldata

Both the boolean and the data part of the option are user-modifiable.

For more details of CDL flavors and how a flavor affects expression evaluation, and other consequences,
seethe Section calledValues and Expressions. The flavor property cannot be used for a package because
packages always have thebooldata flavor. Options and components have thebool flavor by default, since
most configuration choices are simple yes-or-no choices. Interfaces have thedata flavor by default.

The calculated property can be used for options which should not be user-modifiable, but which instead are
fixed by the target hardware or determined from the current values of other options. In general calculated
options should be avoided, since they can be confusing to users who need to figure out whether or not a
particular option can actually be changed. There are a number of valid uses for calculated options, and quite a
few invalid ones as well. Thereference packagesshould be consulted for further details. The property takes an
ordinary CDL expressionas argument, for example:

# A constant on some target hardware, perhaps user-modifiable on other
# targets.
cdl_option CYGNUM_HAL_RTC_PERIOD {

display "Real-time clock period"
flavor data
calculated 12500

}

The calculated property cannot be used for packages or interfaces. The value of a package always corresponds
to the version of that package which is loaded, and this is under user control. Interfaces are implicitly calculated,
based on the number of active and enabled implementors.

The default_value property is similar to calculated, but only specifies a default value which users can modify.
Again this property is not relevant to packages or interfaces. A typical example would be:

cdl_option CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT {
display "Include GDB multi-threading debug support"
requires CYGDBG_KERNEL_DEBUG_GDB_THREAD_SUPPORT
default_value CYGDBG_KERNEL_DEBUG_GDB_THREAD_SUPPORT
...

}

The legal_values property imposes a constraint on the possible values of the data part of an option. Hence it is
only applicable to options with thedata or booldata flavors. It cannot be used for a package since the only
valid value for a package is its version number. The arguments to the legal_values property should constitute a
CDL list expression.

cdl_option CYGNUM_LIBC_TIME_STD_DEFAULT_OFFSET {
display "Default Standard Time offset"
flavor data
legal_values -- -90000 to 90000
default_value -- 0
...

}

The active_if property does not relate directly to an option’s value, but rather to its active state. Usually this is
controlled via the configuration hierarchy: if theCYGPKG_LIBC_STDIOcomponent is disabled then all options
below it are inactive and do not have any consequences. In some cases the hierarchy does not provide sufficient
control, for example an option should only be active if two disjoint sets of conditions are satisfied: the hierarchy
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could be used for one of these conditions, and an additional active_if property could be used for the other one.
The arguments to active_if should constitute aCDL goal expression.

# Do not provide extra semaphore debugging if there are no semaphores
cdl_option CYGDBG_KERNEL_INSTRUMENT_BINSEM {

active_if CYGPKG_KERNEL_SYNCH
...

}

The implements property is related to the concept ofCDL interfaces. If an option is active and enabled and it
implements a particular interface then it contributes1 to that interface’s value.

cdl_package CYGPKG_NET_EDB7XXX_ETH_DRIVERS {
display "Cirrus Logic ethernet driver"
implements CYGHWR_NET_DRIVERS
implements CYGHWR_NET_DRIVER_ETH0
...

}

The requires property is used to impose constraints on the user’s choices. For example it is unreasonable to
expect the C library to provide thread-safe implementations of certain functions if the underlying kernel support
has been disabled, or even if the kernel is not being used at all.

cdl_option CYGSEM_LIBC_PER_THREAD_ERRNO {
display "Per-thread errno"
doc ref/ecos-ref.15.html
requires CYGVAR_KERNEL_THREADS_DATA
default_value 1
...

}

The arguments to the requires property should be aCDL goal expression.

Generating the Configuration Header Files

When creating or updating a build tree the component framework will also generate configuration header files,
one per package. By default it will generate a#define for each option, component or interface that is active and
enabled. For options with thedata or booldata flavors the#define will use the option’s data part, otherwise
it will use the constant1. Typical output would include:

#define CYGFUN_LIBC_TIME_POSIX 1
#define CYGNUM_LIBC_TIME_DST_DEFAULT_STATE -1

There are six properties which can be used to control the header file generation process:define_header,
no_define, define_format, define, if_define, anddefine_proc.

By default the component framework will generate a configuration header file for each package based on
the package’s name: everything up to and including the first underscore is discarded, the rest of the name is
lower-cased, and a.h suffix is appended. For example the configuration header file for the kernel package
CYGPKG_KERNELis pkgconf/kernel.h . The define_header property can be used to specify an alternative file-
name. This applies to all the components and options within a package, so it can only be used in the body
of a cdl_package command. For example the following specifies that the configuration header file for the
SPARClite HAL package ispkgconf/hal_sparclite.h .

cdl_package CYGPKG_HAL_SPARCLITE {
display "SPARClite architecture"
parent CYGPKG_HAL
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hardware
define_header hal_sparclite.h
...

}

Note: At present the main use for the define_header property is related to hardware packages, see the
reference pages for more details.

The no_define property is used to suppress the generation of the default#define . This can be useful if an
option’s consequences are all related to the build process or to constraints, and the option is never actually
checked in any source code. It can also be useful in conjunction with the define, if_define or define_proc
properties. The no_define property does not take any arguments.

cdl_component CYG_HAL_STARTUP {
display "Startup type"
flavor data
legal_values { "RAM" "ROM" }
default_value {"RAM"}
no_define
define -file system.h CYG_HAL_STARTUP
...

}

This example also illustrates the define property, which can be used to generate a#define in addition to the
default one. It takes a single argument, the name of the symbol to be defined. It also takes options to control
the configuration header file in which the symbol should be defined and the format to be used.

The define_format property can be used to control how the value part of the default#define gets formatted.
For example a format string of"0x%04x" could be used to generate a four-digit hexadecimal number.

The if_define property is intended for use primarily to control assertions, tracing, and similar functionality. It
supports a specific implementation model for these, allowing control at the grain of packages or even individual
source files. Thereference pagesprovide additional information.

The define_proc property provides an escape mechanism for those cases where something special has to happen
at configuration header file generation time. It takes a single argument, a fragment of Tcl code, which gets
executed when the header file is generated. This code can output arbitrary data to the header file, or perform
any other actions that might be appropriate.

Controlling what gets Built

There are six properties which affect the build process:compile, make, make_object, library, include_dir, and
include_files. The last three apply to a package as a whole, and can only occur in the body of acdl_package

command.

Most of the source files that go into a package should simply be compiled with the appropriate compiler,
selected by the target architecture, and with the appropriate flags, with an additional set defined by the target
hardware and possible modifications on a per-package basis. The resulting object files will go into the library
libtarget.a , which can then be linked against application code. The compile property is used to list these
source files:

cdl_package CYGPKG_ERROR {
display "Common error code support"
compile strerror.cxx
include_dir cyg/error
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...
}

The arguments to the compile property should be one or more source files. Typically most of the sources will
be needed for the package as a whole, and hence they will be listed in one or more compile properties in the
body of thecdl_package . Some sources may be specific to particular configuration options, in other words
there is no point in compiling them unless that option is enabled, in which case the sources should be listed in
a compile property in the correspondingcdl_option , cdl_component or cdl_interface body.

Some packages may have more complicated build requirements, for example they may involve a special target
such as a linker script which should not end up in the usual library, or they may involve special build steps
for generating an object file. The make and make_object properties provide support for such requirements, for
example:

cdl_package CYGPKG_HAL_MN10300_AM33 {
display "MN10300 AM33 variant"
...
make {

<PREFIX>/lib/target.ld: <PACKAGE>/src/mn10300_am33.ld
$(CC) -E -P -Wp,-MD,target.tmp -DEXTRAS=1 -xc $(INCLUDE_PATH) \

$(CFLAGS) -o $@ $ <

@echo $@ ": \\" > $(notdir $@).deps
@tail +2 target.tmp >> $(notdir $@).deps
@echo >> $(notdir $@).deps
@rm target.tmp

}
}

For full details of custom build steps and the build process generally, seeChapter 4.

By default all object files go into the librarylibtarget.a . It is possible to override this at the package level
using the library property, but this should be avoided since it complicates application development: instead
of just linking with a single library for all eCos-related packages, it suddenly becomes necessary to link with
several libraries.

The include_dir and include_files properties relate to a package’s exported header files. By default a package’s
header files will be exported to theinstall/include directory. This is the desired behavior for some packages
like the C library, since headers likestdio.h should exist at that level. However if all header files were to end
up in that directory then there would be a significant risk of a name clash. Instead it is better for packages to
specify some sub-directory for their exported header files, for example:

cdl_package CYGPKG_INFRA {
display "Infrastructure"
include_dir cyg/infra
...

}

The various header files exported by the infrastructure, for examplecyg_ass.h andcyg_trac.h will now end
up in theinstall/include/cyg/infra sub-directory, where a name clash is very unlikely.

For packages which follow thedirectory layout conventionsthe component framework will assume that the
package’sinclude sub-directory contains all exported header files. If this is not the case, for example because
the package is sufficiently simple that the layout convention is inappropriate, then the exported header files can
be listed explicitly in an include_files property.
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Miscellaneous Properties

The hardwareproperty is only relevant to packages. Some packages such as device drivers and HAL pack-
ages are hardware-specific, and generally it makes no sense to add such packages to a configuration unless the
corresponding hardware is present on your target system. Typically hardware package selection happens auto-
matically when you select your target. The hardware property should be used to identify a hardware-specific
package, and does not take any arguments.

cdl_package CYGPKG_HAL_MIPS {
display "MIPS architecture"
parent CYGPKG_HAL
hardware
include_dir cyg/hal
define_header hal_mips.h
...

}

At present the hardware property is largely ignored by the component framework. This may change in future
releases.

Option Naming Convention
All the options in a given configuration live in the same namespace. Furthermore it is not possible for two
separate options to have the same name, because this would make any references to those options in CDL
expressions ambiguous. A naming convention exists to avoid problems. It is recommended that component
writers observe some or all of this convention to reduce the probability of name clashes with other packages.

There is an important restriction on option names. Typically the component framework will output a#define

for every active and enabled option, using the name as the symbol being defined. This requires that all names
are valid C preprocessor symbols, a limitation that is enforced even for options which have the no_define
property. Preprocessor symbols can be any sequence of lower case lettersa-z , upper case letters,A-Z, the
underscore character_, and the digits0-9. The first character must be a non-digit. Using an underscore as the
first character is discouraged, because that may clash with reserved language identifiers. In addition there is a
convention that preprocessor symbols only use upper case letters, and some component writers may wish to
follow this convention.

A typical option name could be something likeCYGSEM_KERNEL_SCHED_BITMAP. This name consists of several
different parts:

1. The first few characters, in this case the three lettersCYG, are used to identify the organization that produced
the package. For historical reasons packages produced by Red Hat tend to use the prefixCYGrather than
RHAT. Component writers should use their own prefix: even when cutting and pasting from an existing
CDL script the prefix should be changed to something appropriate to their organization.

It can be argued that a short prefix, often limited to upper case letters, is not sufficiently long to eliminate
the possibility of name clashes. A longer prefix could be used, for example one based on internet domain
names. However the C preprocessor has no concept of namespaces orimport directives, so it would
always be necessary to use the full option name in component source code which gets tedious - option
names tend to be long enough as it is. There is a small increased risk of name clashes, but this risk is felt
to be acceptable.

2. The next three characters indicate the nature of the option, for example whether it affects the interface or
just the implementation. A list of common tags is given below.
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3. TheKERNEL_SCHEDpart indicates the location of the option within the overall hierarchy. In this case the
option is part of the scheduling component of the kernel package. Having the hierarchy details as part of
the option name can help in understanding configurable code and further reduces the probability of a name
clash.

4. The final part,BITMAP, identifies the option itself.

The three-character tag is intended to provide some additional information about the nature of the option. There
are a number of pre-defined tags. However for many options there is a choice: options related to the platform
should normally useHWR, but numerical options should normally useNUM; a platform-related numerical option
such as the size of an interrupt stack could therefore use either tag. There are no absolute rules, and it is left to
component writers to interpret the following guidelines:

xxxARC_

TheARCtag is intended for options related to the processor architecture. Typically such options will only
occur in architectural or variant HAL packages.

xxxHWR_

TheHWRtag is intended for options related to the specific target board. Typically such options will only
occur in platform HAL packages.

xxxPKG_

This tag is intended for packages or components, in other words options which extend the configuration
hierarchy. Arguably aCOMtag would be more appropriate for components, but this could be confusing
because of the considerable number of computing terms that begin with com.

xxxGLO_

This is intended for global configuration options, especially preferences.

xxxDBG_

The DBGtag indicates that the option is in some way related to debugging, for example it may enable
assertions in some part of the system.

xxxTST_

This tag is for testing-related options. Typically these do not affect actual application code, instead they
control the interaction between target-side test cases and a host-side testing infrastructure.

xxxFUN_

This is for configuration options which affect the interface of a package. There are a number of related tag
which are also interface-related.xxxFUN_ is intended primarily for options that control whether or not one
or more functions are provided by the package, but can also be used if none of the other interface-related
tags is applicable.

xxxVAR_

This is analogous toFUNbut controls the presence or absence of one or more variables or objects.

xxxCLS_

The CLS tag is intended only for packages that provide an object-oriented interface, and controls the
presence or absence of an entire class.
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xxxMFN_

This is also for object-orientated interfaces, and indicates the presence or absence of a member function
rather than an entire class.

xxxSEM_

A SEMoption does not affect the interface (or if does affect the interface, this is incidental). Instead it is
used for options which have a fundamental effect on the semantic behavior of a package. For example the
choice of kernel schedulers is semantic in nature: it does not affect the interface, in particular the function
cyg_thread_create exists irrespective of which scheduler has been selected. However it does have a
major impact on the system’s behavior.

xxxIMP_

IMP is for implementation options. These do not affect either the interface or the semantic behavior (with
the possible exception of timing-related changes). A typical implementation option controls whether or
not a particular function or set of functions should get inlined.

xxxNUM_

This tag is for numerical options, for example the number of scheduling priority levels.

xxxDAT_

This is for data items that are not numerical in nature, for example a device name.

xxxBLD_

TheBLD tag indicates an option that affects the build process, for example compiler flag settings.

xxxINT_

This should normally be used for CDL interfaces, which is a language construct that is largely independent
from the interface exported by a package via its header files. For more details of CDL interfaces seethe
Section calledInterfaces.

xxxPRI_

This tag is not normally used for configuration options. Instead it is used by CDL scripts to pass additional
private information to the source code via the configuration header files, typically inside a define_proc
property.

xxxSRC_

This tag is not normally used for configuration options. Instead it can be used by package source code to
interact with such options, especially in the context of the if_define property.

There is one special case of a potential name clash that is worth mentioning here. When the component frame-
work generates a configuration header file for a given package, by default it will use a name derived from the
package name (the define_header property can be used to override this). The file name is constructed from
the package name by removing everything up to and including the first underscore, converting the remainder
of the name to lower case, and appending a.h suffix. For example the kernel packageCYGPKG_KERNELwill
involve a header filepkgconf/kernel.h . If a configuration contained some other packageXYZPKG_KERNEL

then this would attempt to use the same configuration header file, with unfortunate effects. Case sensitivity
could introduce problems as well, so a packagexyzpkg_kernel would involve the same problem. Even if the
header file names preserved the case of the package name, not all file systems are case sensitive. There is no
simple solution to this problem. Changing the names of the generated configuration header files would involve
a major incompatible change to the interface, to solve a problem which is essentially hypothetical in nature.
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An Introduction to Tcl
All CDL scripts are implemented as Tcl scripts, and are read in by running the data through a standard Tcl
interpreter, extended with a small number of additional commands such ascdl_option andcdl_component .
Often it is not necessary to know the full details of Tcl syntax. Instead it is possible to copy an existing script,
perform some copy and paste operations, and make appropriate changes to names and to various properties.
However there are also cases where an understanding of Tcl syntax is very desirable, for example:

cdl_option CYGDAT_UITRON_MEMPOOLFIXED_EXTERNS {
display "Externs for initialization"
flavor data
default_value {"static char fpool1[ 2000 ], \\\n\

fpool2[ 2000 ], \\\n\
fpool3[ 2000 ];"}

...
}

This causes thecdl_option command to be executed, which in turn evaluates its body in a recursive invo-
cation of the Tcl interpreter. When the default_value property is encountered the braces around the value part
are processed by the interpreter, stopping it from doing further processing of the braced contents (except for
backslash processing at the end of a line, that is special). In particular it prevents command substitution for
[ 2000 ] . A single argument will be passed to the default_value command which expects a CDL expression,
so the expression parsing code is passed the following:

"static char fpool1[ 2000 ], \\\n fpool2[ 2000 ], \\\n fpool3[ 2000 ];"

The CDL expression parsing code will treat this as a simple string constant, as opposed to a more compli-
cated expression involving other options and various operators. The string parsing code will perform the usual
backslash substitutions so the actual default value will be:

static char fpool1[ 2000 ], \
fpool2[ 2000 ], \
fpool3[ 2000 ];

If the user does not modify the option’s value then the following will be generated in the appropriate configu-
ration header file:

#define CYGDAT_UITRON_MEMPOOLFIXED_EXTERNS static char fpool1[ 2000 ], \
fpool2[ 2000 ], \
fpool3[ 2000 ];

Getting this desired result usually requires an understanding of both Tcl syntax and CDL expression syntax.
Sometimes it is possible to substitute a certain amount of trial and error instead, but this may prove frustrating.
It is also worth pointing out that many CDL scripts do not involve this level of complexity. On the other hand,
some of the more advanced features of the CDL language involve fragments of Tcl code, for example the
define_proc property. To use these component writers will need to know about the full Tcl language as well as
the syntax.

Although the current example may seem to suggest that Tcl is rather complicated, it is actually a very simple
yet powerful scripting language: the syntax is defined by just eleven rules. On occasion this simplicity means
that Tcl’s behavior is subtly different from other languages, which can confuse newcomers.

When the Tcl interpreter is passed some data such asputs Hello , it splits this data into a command and
its arguments. The command will be terminated by a newline or by a semicolon, unless one of the quoting
mechanisms is used. The command and each of its arguments are separated by white space. So in the following
example:
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puts Hello
set x 42

This will result in two separate commands being executed. The first command isputs and is passed a single
argument,Hello . The second command isset and is passed two arguments,x and42. The intervening newline
character serves to terminate the first command, and a semi-colon separator could be used instead:

puts Hello;set x 42

Any white space surrounding the semicolon is just ignored because it does not serve to separate arguments.

Now consider the following:

set x Hello world

This is not valid Tcl. It is an attempt to invoke theset command with three arguments:x , Hello , andworld .
Theset only takes two arguments, a variable name and a value, so it is necessary to combine the data into a
single argument by quoting:

set x "Hello world"

When the Tcl interpreter encounters the first quote character it treats all subsequent data up to but not including
the closing quote as part of the current argument. The quote marks are removed by the interpreter, so the second
argument passed to theset command is justHello world without the quote characters. This can be significant
in the context of CDL scripts. For example:

cdl_option CYG_HAL_STARTUP {
...
default_value "RAM"

}

The Tcl interpreter strips off the quote marks so the CDL expression parsing code seesRAMinstead of"RAM".
It will treat this as a reference to some unknown optionRAMrather than as a string constant, and the expression
evaluation code will use a value of0 when it encounters an option that is not currently loaded. Therefore the
option CYG_HAL_STARTUPends up with a default value of0. Either braces or backslashes should be used to
avoid this, for exampledefault_value { "RAM" } .

Note: There are long-term plans to implement some sort of CDL validation utility cdllint which could catch
common errors like this one.

A quoted argument continues until the closing quote character is encountered, which means that it can span
multiple lines. Newline or semicolon characters do not terminate the current command in such cases. descrip-
tion properties usually make use of this:

cdl_package CYGPKG_ERROR {
description "

This package contains the common list of error and
status codes. It is held centrally to allow
packages to interchange error codes and status
codes in a common way, rather than each package
having its own conventions for error/status
reporting. The error codes are modelled on the
POSIX style naming e.g. EINVAL etc. This package
also provides the standard strerror() function to
convert error codes to textual representation."

...
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}

The Tcl interpreter supports much the same forms of backslash substitution as other common programming
languages. Some backslash sequences such as\n will be replaced by the appropriate character. The sequence
\\ will be replaced by a single backslash. A backslash at the very end of a line will cause that backslash, the
newline character, and any white space at the start of the next line to be replaced by a single space. Hence the
following two Tcl commands are equivalent:

puts "Hello\nworld\n"
puts \
"Hello
world
"

If a description string needs to contain quote marks or other special characters then backslash escapes can be
used. In addition to quote and backslash characters, the Tcl interpreter treats square brackets, the$ character,
and braces specially. Square brackets are used for command substitution, for example:

puts "The answer is [expr 6 * 9]"

When the Tcl interpreter encounters the square brackets it will treat the contents as another command that
should be executed first, and the result of executing that is used when continuing to process the script. In this
case the Tcl interpreter will execute the commandexpr 6 * 9 , yielding a result of 421 and then the Tcl
interpreter will executeputs "The answer is 42" . It should be noted that the interpreter performs only one
level of substitution: if the result of performing command substitution performs further special characters such
as square brackets then these will not be treated specially.

Command substitution will not prove useful for many CDL scripts, except for e.g. a define_proc property which
involves a fragment of Tcl code. Potentially there are some interesting uses, for example to internationalize
display strings. However care does have to be taken to avoid unexpected command substitution, for example if
an option description involves square brackets then typically these would require backslash-escapes.

The$ character is used in Tcl scripts to perform variable substitution:

set x [expr 6 * 9]
puts "The answer is $x"

Variable substitution, like command substitution, is unlikely to prove useful for many CDL scripts except in
the context of Tcl fragments. If it is necessary to have a$ character then a backslash escape may have to be
used.

Braces are used to collect a sequence of characters into a single argument, just like quotes. The difference
is that variable, command and backslash substitution do not occur inside braces (with the sole exception of
backslash substitution at the end of a line). Therefore given a line in a CDL script such as:

default_value {"RAM"}

The braces are stripped off by the Tcl interpreter, leaving"RAM" which will be handled as a string constant by
the expression parsing code. The same effect could be achieved using one of the following:

default_value \"RAM\"
default_value "\"RAM\""

Generally the use of braces is less confusing. At this stage it is worth noting that the basic format of CDL data
makes use of braces:

cdl_option <name> {
...
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};

Thecdl_option command is passed two arguments, a name and a body, where the body consists of everything
inside the braces but not the braces themselves. This body can then be executed in a recursive invocation of the
Tcl interpreter. If a CDL script contains mismatched braces then the interpreter is likely to get rather confused
and the resulting diagnostics may be difficult to understand.

Comments in Tcl scripts are introduced by a hash character#. However, a hash character only introduces a
comment if it occurs where a command is expected. Consider the following:

# This is a comment
puts "Hello" # world

The first line is a valid comment, since the hash character occurs right at the start where a command name is
expected. The second line does not contain a comment. Instead it is an attempt to invoke theputs command
with three arguments:Hello , # andworld . These are not valid arguments for theputs command so an error
will be raised. If the second line was rewritten as:

puts "Hello"; # world

then this is a valid Tcl script. The semicolon identifies the end of the current command, so the hash character
occurs at a point where the next command would start and hence it is interpreted as the start of a comment.

This handling of comments can lead to subtle behavior. Consider the following:

cdl_option WHATEVER {
# This is a comment }

default_value 0
...

}

Consider the way the Tcl interpreter processes this. The command name and the first argument do not pose
any special difficulties. The opening brace is interpreted as the start of the next argument, which continues
until a closing brace is encountered. In this case the closing brace occurs on the second line, so the second
argument passed tocdl_option is \n # This is a comment . This second argument is processed in a
recursive invocation of the Tcl interpreter and does not contain any commands, just a comment. Top-level
script processing then resumes, and the next command that is encountered isdefault_value . Since the parser
is not currently processing a configuration option this is an error. Later on the Tcl interpreter would encounter
a closing brace by itself, which is also an error.

For component writers who need more information about Tcl, especially about the language rather than
the syntax, various resources are available. A reasonable starting point is the Scriptics developer web site
(http://www.tcl.tk/scripting/).

Values and Expressions
It is fairly reasonable to expect that enabling or disabling a configuration option such as
CYGVAR_KERNEL_THREADS_DATAin some way affects itsvalue. This will have an effect on any expressions
that reference this option such asrequires CYGVAR_KERNEL_THREADS_DATA. It will also affect the
consequences of that option: how it affects the build process and what happens to any constraints that
CYGVAR_KERNEL_THREADS_DATAmay impose (as opposed to constraints on this option imposed by others).

In a language like C the handling of variables is relatively straightforward. If a variablex gets referenced in
an expression such asif (x != 0) , and that variable is not defined anywhere, then the code will fail to build,
typically with an unresolved error at link-time. Also in C a variablex does not live in any hierarchy, so its value
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for the purposes of expression evaluation is not affected by anything else. C variables also have a clear type
such asint or long double .

In CDL things are not so straightforward.

Option Values

There are four factors which go into an option’s value:

1. An option may or may not be loaded.

2. If the option is loaded, it may or may not be active.

3. Even if the option is active, it may or may not be enabled.

4. If the option is loaded, active and enabled then it will have some associated data which constitutes its
value.

Is the Option Loaded?

At any one time a configuration will contain only a subset of all possible packages. In fact it is impossible to
combine certain packages in a single configuration. For example architectural HAL packages should contain
a set of options defining endianness, the sizes of basic data types and so on (many of which will of course be
constant for any given architecture). Any attempt to load two architectural HAL packages into a configuration
will fail because of the resulting name clash. Since CDL expressions can reference options in other packages,
and often need to do so, it is essential to define the resulting behavior.

One complication is that the component framework does not know about every single option in every sin-
gle package. Obviously it cannot know about packages from arbitrary third parties which have not been in-
stalled. Even for packages which have been installed, the current repository database does not hold details
of every option, only of the packages themselves. If a CDL expression contains a reference to some option
CYGSEM_KERNEL_SCHED_TIMESLICEthen the component framework will only know about this option if the
kernel package is actually loaded into the current configuration. If the package is not loaded then theoretically
the framework might guess that the option is somehow related to the kernel by examining the option name
but this would not be robust: the option could easily be part of some other package that violates the naming
convention.

Assume that the user is building a minimal configuration which does not contain the kernel package, but does
have other packages which contain the following constraints:

requires CYGPKG_KERNEL
requires CYGPKG_KERNEL_THREADS_DATA
requires !CYGSEM_KERNEL_SCHED_TIMESLICE

Clearly the first constraint is not satisfied because the kernel is not loaded. The second constraint is also not
satisfied. The third constraint is trivially satisfied: if there is no kernel then the kernel’s timeslicing support
cannot possibly be enabled.

Any options which are not in the current configuration are handled as follows:

1. Any references to that option will evaluate to0, sorequires !CYGSEM_KERNEL_SCHED_TIMESLICE will
be satisfied butrequires CYGSEM_KERNEL_THREADS_DATAwill not be satisfied.

2. An option that is not loaded has no consequences on the build process. It cannot directly result in any
#define’s in a configuration header file, nor in any files being compiled. This is only reasonable: if
the option is not loaded then the component framework has no way of knowing about any compile or
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similar properties. An option that is not loaded can have indirect consequences by being referenced in
CDL expressions.

3. An option that is not loaded cannot impose any constraints on the rest of the configuration. Again this
is the only reasonable behavior: if the option is not loaded then any associated requires or legal_values
properties will not be known.

Is the Option Active

The next issue to consider is whether or not a particular option is active. Configuration options are organized
in a hierarchy of components and sub-components. For example the C library package contains a component
CYGPKG_LIBC_STDIOcontaining all the options related to standard I/O. If a user disables the component as a
whole then all the options below it become inactive: it makes no sense to disable all stdio functionality and
then manipulate the buffer sizes.

Inactive is not quite the same as disabled, although the effects are similar. The value of an inactive option is
preserved. If the user modifies a buffer size option, then disables the whole stdio component, the buffer size
value remains in case the stdio component is re-enabled later on. Some tools such as the graphical configuration
tool will treat inactive options specially, for example such options may be grayed out.

The active or inactive state of an option may affect other packages. For example a package may use thesprintf

function and require support for floating point conversions, a constraint that is not satisfied if the relevant option
is inactive. It is necessary to define exactly what it means for an option to be inactive:

1. An option is inactive if its parent is either inactive or disabled. For example ifCYGPKG_LIBC_STDIO

is disabled then all the options and sub-components become inactive; sinceCYG-

PKG_LIBC_STDIO_FLOATING_POINTis now inactive,CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINTis
inactive as well.

2. Options may also be inactive as a result of an active_if property. This is useful if a particular option is only
relevant if two or more disjoint sets of conditions need to be satisfied, since the hierarchical structure can
only cope with at most one such set.

3. If an option is inactive then any references to that option in CDL expressions will evaluate to0. Hence
a constraint of the formrequires CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT is not satisfied if the
entire stdio component is disabled.

4. An option that is inactive has no consequences on the build process. No#define will be generated. Any
compile or similar properties will be ignored.

5. An option that is inactive cannot impose any constraints on the rest of the configuration. For example
CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINThas a dependencyrequires CYGPKG_LIBM , but if all of
the stdio functionality is disabled then this constraint is ignored (although of course there may be other
packages which have a dependency onCYGPKG_LIBM.

Is the Option Enabled? What is the Data?

The majority of configuration options are boolean in nature, so the user can either enable or disable some
functionality. Some options are different. For exampleCYGNUM_LIBC_STDIO_BUFSIZEis a number, andCYG-

DAT_LIBC_STDIO_DEFAULT_CONSOLEis a string corresponding to a device name. A few options likeCYG-

DAT_UITRON_TASK_EXTERNScan get very complicated. CDL has to cope with this variety, and define the exact
behavior of the system in terms of constraints and build-time consequences.

In CDL the value of an option consists of two parts. There is a boolean part, controlling whether or not the
option is enabled. There is also a data part, providing additional information. For most options one of these
parts is fixed, as controlled by the option’s flavor property:
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Flavor Enabled Data

none Always enabled 1, not modifiable

bool User-modifiable 1, not modifiable

data Always enabled User-modifiable

booldata User-modifiable User-modifiable

The effects of the boolean and data parts are as follows:

1. If an option is disabled, in other words if the boolean part is false, then any references to that option in
CDL expressions will evaluate to0. This is the same behavior as for inactive options. The data part is not
relevant. Thenone anddata flavors specify that the option is always enabled, in which case this rule is
not applicable.

2. If an option is enabled then any references to that option in CDL expressions will evaluate to the option’s
data part. For two of the flavors,none andbool , this data part is fixed to the constant1 which generally
has the expected result.

3. If a component or package is disabled then all sub-components and options immediately below it in the
hierarchy are inactive. By a process of recursion this will affect all the nodes in the subtree.

4. If an option is disabled then it can impose no constraints on the rest of the configuration, in particular
requires and legal_values properties will be ignored. If an option is enabled then its constraints should be
satisfied, or the component framework will report various conflicts. Note that the legal_values constraint
only applies to the data part of the option’s value, so it is only useful with thedata andbooldata flavors.
Options with thenone anddata flavors are always enabled so their constraints always have to be satisfied
(assuming the option is active).

5. If an option is disabled then it has no direct consequences at build-time: no#define will be generated,
no files will get compiled, and so on. If an option is active and enabled then all the consequences take
effect. The option name and data part are used to generate the#define in the appropriate configuration
header file, subject to various properties such as no_define, but the data part has no other effects on the
build system.

By default all options and components have thebool flavor: most options are boolean in nature, so making
this the default allows for slightly more compact CDL scripts. Packages have thebooldata flavor, where the
data part always corresponds to the version of the package that is loaded into the configuration: changing this
value corresponds to unloading the old version and loading in a different one.

CDL Flavors: The concept of CDL flavors tends to result in various discussions about why it is unneces-
sarily complicated, and would it not have been easier to do . . . However there are very good reasons why
CDL works the way it does.

The first common suggestion is that there is no need to have separate flavors bool , data , and so on. A
boolean option could just be handled as a data option with legal values 0 and 1. The counter arguments
are as follows:

1. It would actually make CDL scripts more verbose. By default all options and components have the
bool flavor, since most options are boolean in nature. Without a bool flavor it would be necessary to
indicate explicitly what the legal values are somehow, e.g. with a legal_values property.

2. The boolean part of an option’s value has a very different effect from the data part. If an option is
disabled then it has no consequences at build time, and can impose no constraints. A data option
always has consequences and can impose constraints. To get the desired effect it would be necessary
to add CDL data indicating that a value of 0 should be treated specially. Arguably this could be made
built-in default behavior, although that would complicate options where 0 is a perfectly legal number,
for example CYGNUM_LIBC_TIME_STD_DEFAULT_OFFSET.
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3. There would no replacement for a booldata option for which 0 is a valid value. Again some additional
CDL syntax would be needed to express such a concept.

Although initially it may seem confusing that an option’s value has both a boolean and a data part, it is an
accurate reflection of how configuration options actually work. The various alternatives would all make it
harder to write CDL scripts.

The next common suggestion is that the data part of a value should be typed in much the same way as
C or C++ data types. For example it should be possible to describe CYGNUM_LIBC_STDIO_BUFSIZEas an
integer value, rather than imposing legal_values constraints. Again there are very good reasons why this
approach was not taken:

1. The possible legal values for an integer are rarely correct for a CDL option. A constraint such as
1 to 0x7fffffff is a bit more accurate, although if this option indicates a buffer size it is still not
particularly good — very few targets will have enough memory for such a buffer. Forcing CDL writers
to list the legal_values constraints explicitly should make them think a bit more about what values are
actually sensible. For example CYGNUM_LIBC_TIME_DST_DEFAULT_OFFSEThas legal values in the range
-90000 to 90000 , which helps the user to set a sensible value.

2. Not all options correspond to simple data types such as integers. CYG-

DAT_LIBC_STDIO_DEFAULT_CONSOLEis a C string, and would have to be expressed using something
like char [] . This introduces plenty of opportunities for confusion, especially since square brackets
may get processed by the Tcl interpreter for command substitution.

3. Some configuration options can get very complicated indeed, for example the default value of CYG-

DAT_UITRON_TASK_INITIALIZERS is:

CYG_UIT_TASK( "t1", 1, task1, &stack1, CYGNUM_UITRON_STACK_SIZE ), \
CYG_UIT_TASK( "t2", 2, task2, &stack2, CYGNUM_UITRON_STACK_SIZE ), \
CYG_UIT_TASK( "t3", 3, task3, &stack3, CYGNUM_UITRON_STACK_SIZE ), \
CYG_UIT_TASK( "t4", 4, task4, &stack4, CYGNUM_UITRON_STACK_SIZE )

This would require CDL knowing about C macros, structures, arrays, static initializers, and so on.
Adding such detailed knowledge about the C language to the component framework is inappropriate.

4. CDL needs to be usable with languages other than C. At present this includes C++, in future it may
include languages such as Java. Each language adds new data types and related complications, for
example C++ classes and inheritance. Making CDL support a union of all data types in all possible
languages is not sensible.

The CDL approach of treating all data as a sequence of characters, possibly constrained by a legal_values
property or other means, has the great advantage of simplicity. It also fits in with the Tcl language that
underlies CDL.

Some Examples

The following excerpt from the C library’s CDL scripts can be used to illustrate how values and flavors work
in practice:

cdl_component CYGPKG_LIBC_RAND {
flavor none
compile stdlib/rand.cxx

cdl_option CYGSEM_LIBC_PER_THREAD_RAND {
requires CYGVAR_KERNEL_THREADS_DATA
default_value 0

}
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cdl_option CYGNUM_LIBC_RAND_SEED {
flavor data
legal_values 0 to 0x7fffffff
default_value 1

}

cdl_option CYGNUM_LIBC_RAND_TRACE_LEVEL {
flavor data
legal_values 0 to 1
default_value 0

}
}

If the application does not require any C library functionality then it is possible to have a configuration where
the C library is not loaded. This can be achieved by starting with the minimal template, or by starting with
another template such as the default one and then explicitly unloading the C library package. If this package
is not loaded then any references to theCYGPKG_LIBC_RANDcomponent or any of its options will have a value
of 0 for the purposes of expression evaluation. No#define’s will be generated for the component or any of
its options, and the filestdlib/rand.cxx will not get compiled. There is nothing special about the C library
here, exactly the same would apply for say a device driver that does not correspond to any of the devices on
the target hardware.

Assuming the C library is loaded, the next thing to consider is whether or not the component and its options are
active. The component is layered immediately below the C library package itself, so if the package is loaded
then it is safe to assume that the package is also enabled. Therefore the parent ofCYGPKG_LIBC_RANDis active
and enabled, and in the absence of any active_if propertiesCYGPKG_LIBC_RANDwill be active as well.

The componentCYGPKG_LIBC_RANDhas the flavornone . This means the component cannot be disabled. There-
fore all the options in this component have an active and enabled parent, and in the absence of any active_if
properties they are all active as well.

The component’s flavornone serves to group together all of the configuration options related to random number
generation. This is particularly useful in the context of the graphical configuration tool, but it also helps when it
comes to naming the options: all of the options begin withCYGxxx_LIBC_RAND, giving a clear hint about both
the package and the component within that package. The flavor means that the component is always enabled
and has the value1 for the purposes of expression evaluation. There will always be a single#define of the
form:

#define CYGPKG_LIBC_RAND 1

In addition the filestdlib/rand.cxx will always get built. If the component had the defaultbool flavor then
users would be able to disable the whole component, and one less file would need to be built. However random
number generation is relatively simple, so the impact on eCos build times are small. Furthermore by default the
code has no dependencies on other parts of the system, so compiling the code has no unexpected side effects.
Even if it was possible to disable the component, the sensible default for most applications would still leave it
enabled. The net result is that the flavornone is probably the most sensible one for this component. For other
components the defaultbool flavor or one of the other flavors might be more appropriate.

Next consider optionCYGSEM_LIBC_PER_THREAD_RANDwhich can be used to get a per-thread random number
seed, possibly useful if the application needs a consistent sequence of random numbers. In the absence of a
flavor property this option will be boolean, and the default_value property means that it is disabled by default —
reasonable since few applications need this particular functionality, and it does impose a constraint on the rest
of the system. If the option is left disabled then no#define will be generated, and if there were any compile or
similar properties these would not take effect. If the option is enabled then a#define will be generated, using
the option’s data part which is fixed at1:

#define CYGSEM_LIBC_PER_THREAD_RAND 1
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The CYGSEM_LIBC_PER_THREAD_RANDoption has a requires constraint onCYGVAR_KERNEL_THREADS_DATA.
If the C library option is enabled then the constraint should be satisfied, or else the configuration contains a
conflict. If the configuration does not include the kernel package thenCYGVAR_KERNEL_THREADS_DATAwill
evaluate to0 and the constraint is not satisfied. Similarly if the option is inactive or disabled the constraint will
not be satisfied.

CYGNUM_LIBC_RAND_SEEDandCYGNUM_LIBC_RAND_TRACE_LEVELboth have thedata flavor, so they are al-
ways enabled and the component framework will generate appropriate#define’s :

#define CYGNUM_LIBC_RAND_SEED 1
#define CYGNUM_LIBC_RAND_SEED_1
#define CYGNUM_LIBC_RAND_TRACE_LEVEL 0
#define CYGNUM_LIBC_RAND_TRACE_LEVEL_0

Neither option has a compile or similar property, but any such properties would take effect. Any references
to these options in CDL expressions would evaluate to the data part, so a hypothetical constraint of the form
{ requires CYGNUM_LIBC_RAND_SEED > 42 } would not be satisfied with the default values. Both options
use a simple constant for the default_value expression. It would be possible to use a more complicated expres-
sion, for example the default forCYGNUM_LIBC_RAND_TRACE_LEVELcould be determined from some global
debugging option or from a debugging option that applies to the C library as a whole. Both options also have
a legal_values constraint, which must be satisfied since the options are active and enabled.

Note: The value 0 is legal for both CYGNUM_LIBC_RAND_SEEDand CYGNUM_LIBC_RAND_TRACE_LEVEL, so in a
CDL expression there is no easy way of distinguishing between the options being absent or having that
particular value. This will be addressed by future enhancements to the expression syntax.

Ordinary Expressions

Expressions in CDL follow a conventional syntax, for example:

default_value CYGGLO_CODESIZE > CYGGLO_SPEED
default_value { (CYG_HAL_STARTUP == "RAM" &&

!CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS &&
!CYGINT_HAL_USE_ROM_MONITOR_UNSUPPORTED &&
!CYGSEM_HAL_POWERPC_COPY_VECTORS) ? 1 : 0 }

default_value { "\"/dev/ser0\"" }

However there is a complication in that the various arguments to a default_value property will first get pro-
cessed by a Tcl interpreter, so special characters like quotes and square brackets may get processed. Such
problems can be avoided by enclosing non-trivial expressions in braces, as in the second example above. The
way expression parsing actually works is as follows:

1. The Tcl interpreter splits the line or lines into a command and its arguments. In the first default_value
expression above the command isdefault_value and there are three arguments,CYGGLO_CODESIZE, >

andCYGGLO_SPEED. In the second and third examples there is just one argument, courtesy of the braces.

2. Next option processing takes place, so any initial arguments that begin with a hyphen will be interpreted
as options. This can cause problems if the expression involves a negative number, so the special argument
-- can be used to prevent option processing on the subsequent arguments.

3. All of the arguments are now concatenated, with a single space in between each one. Hence the following
two expressions are equivalent, even though they will have been processed differently up to this point.
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default_value CYGGLO_CODESIZE > CYGGLO_SPEED
default_value {CYGGLO_CODESIZE > CYGGLO_SPEED}

4. The expression parsing code now has a single string to process.

CDL expressions consist of four types of element: references to configuration options, constant strings, inte-
gers, and floating point numbers. These are combined using a conventional set of operators: the unary operators
- , ~ and! ; the arithmetic operators+, - , * , / and%; the shift operators<< and>>; the comparison operators
==, != , <, <=, > and>=; the bitwise operators&, ^ and | ; the logical operators&& and || ; the string con-
catenation operator. ; and the ternary conditional operatorA ? B : C . There is also support for some less
widely available operators for logical equivalence and implication, and for a set of function-style operations.
Bracketed sub-expressions are supported, and the operators have the usual precedence:

Priority Operators Category

16 references, constants basic elements

15 f(a, b, c) function calls

14 ~ bitwise not

14 ! logical not

14 - arithmetic negation

13 * / % multiplicative arithmetic

12 + - . additive arithmetic and string
concatenation

11 << >> bitwise shifts

10 <= < > >= inequality

9 == != comparison

8 & bitwise and

7 ^ bitwise xor

6 | bitwise or

5 && logical and

4 || logical or

3 xor, eqv logical equivalance

2 implies logical implication

1 ? : conditional

Function calls have the usual format of a name, an opening bracket, one or more arguments separated by
commas, and a closing bracket. For example:

requires { !is_substr(CYGBLD_GLOBAL_CFLAGS, " -fno-rtti") }

Functions will differ in the number of arguments and may impose restrictions on some or all of their arguments.
For example it may be necessary for the first argument to be a reference to a configuration option. The available
functions are described inthe Section calledFunctions.

The logicalxor operator evaluates to true if either the left hand side or the right hand side but not both evaluate
to true The logicaleqv operator evaluates to true if both the left and right hand sides evaluate to true, or if both
evaluate to false. Theimplies operator evaluates to true either if the left hand side is false or if the right hand
side is true, in other wordsA implies B has the same meaning as!A || B . An example use would be:

requires { is_active(CYGNUM_LIBC_MAIN_DEFAULT_STACK_SIZE) implies
(CYGNUM_LIBC_MAIN_DEFAULT_STACK_SIZE >= (16 * 1024)) }
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This constraint would be satisfied if either the support for a main stack size is disabled, or if that stack is at
least 16K. However if such a stack were in use but was too small, a conflict would be raised.

A valid CDL identifier in an expression, for exampleCYGGLO_SPEED, will be interpreted as a reference to
a configuration option by that name. The option does not have to be loaded into the current configuration.
When the component framework evaluates the expression it will substitute in a suitable value that depends on
whether or not the option is loaded, active, and enabled. The exact rules are described inthe Section called
Option Values.

A constant string is any sequence of characters enclosed in quotes. Care has to be taken that these quotes are
not stripped off by the Tcl interpreter before the CDL expression parser sees them. Consider the following:

default_value "RAM"

The quote marks will be stripped before the CDL expression parser sees the data, so the expression will be
interpreted as a reference to a configuration optionRAM. There is unlikely to be such an option, so the actual
default value will be0. Careful use of braces or other Tcl quoting mechanisms can be used to avoid such
problems.

String constants consist of the data inside the quotes. If the data itself needs to contain quote characters then
appropriate quoting is again necessary, for example:

default_value { "\"/dev/ser0\"" }

An integer constant consists of a sequence of digits, optionally preceeded with the unary+ or - operators. As
usual the sequence0x or 0X can be used for hexadecimal data, and a leading0 indicates octal data. Internally the
component framework uses 64-bit arithmetic for integer data. If a constant is too large then double precision
arithmetic will be used instead. Traditional syntax is also used for double precision numbers, for example
3.141592 or -3E6 .

Of course this is not completely accurate: CDL is not a typed language, all data is treated as if it were a string.
For example the following two lines are equivalent:

requires CYGNUM_UITRON_SEMAS > 10
requires { CYGNUM_UITRON_SEMAS > "10" }

When an expression gets evaluated the operators will attempt appropriate conversions. The> comparison
operator can be used on either integer or double precision numbers, so it will begin by attempting a string to
integer conversion of both operands. If that fails it will attempt string to double conversions. If that fails as well
then the component framework will report a conflict, an evaluation exception. If the conversions from string to
integer are successful then the result will be either the string0 or the string1, both of which can be converted
to integers or doubles as required.

It is worth noting that the expressionCYGNUM_UITRON_SEMAS>10 is not ambiguous. CDL identifiers can never
begin with a digit, so it is not possible for10 to be misinterpreted as a reference to an identifier instead of as a
string.

Of course the implementation is slightly different again. The CDL language definition is such that
all data is treated as if it were a string, with conversions to integer, double or boolean as and when
required. The implementation is allowed to avoid conversions until they are necessary. For example, given
CYGNUM_UITRON_SEMAS> 10 the expression parsing code will perform an immediate conversion from string
to integer, storing the integer representation, and there is no need for a conversion by the comparison operator
when the expression gets evaluated. Given{ CYGNUM_UITRON_SEMAS> "10" } the parsing code will store
the string representation and a conversion happens the first time the expression is evaluated. All of this is an
implementation detail, and does not affect the semantics of the language.
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Different operators have different requirements, for example the bitwise or operator only makes sense if both
operands have an integer representation. For operators which can work with either integer or double precision
numbers, integer arithmetic will be preferred.

The following operators only accept integer operands: unary~ (bitwise not), the shift operators<< and>>,
and the bitwise operators&, | and^ .

The following operators will attempt integer arithmetic first, then double precision arithmetic: unary- , the
arithmetic operators+, - , * , / , and%; and the comparision operators<, <=, > and>=.

The equality== and inequality!= operators will first attempt integer conversion and comparison. If that fails
then double precision will be attempted (although arguably using these operators on double precision data is
not sensible). As a last resort string comparison will be used.

The operators! , && and|| all work with boolean data. Any string that can be converted to the integer0 or the
double0.0 is treated as false, as is the empty string or the constant stringfalse . Anything else is interpreted
as true. The result is either0 or 1.

The conditional operator? : will interpret its first operand as a boolean. It does not perform any processing
on the second or third operands.

In practice it is rarely necessary to worry about any of these details. In nearly every case CDL expressions just
work as expected, and there is no need to understand the full details.

Note: The current expression syntax does not meet all the needs of component writers. Some future
enhancements will definitely be made, others are more controversial. The list includes the following:

1. An option’s value is determined by several different factors: whether or not it is loaded, whether or not
it is active, whether or not it is enabled, and the data part. Currently there is no way of querying these
individually. This is very significant in the context of options with the bool or booldata flavors, because
there is no way of distinguishing between the option being absent/inactive/disabled or it being enabled
with a data field of 0. There should be unary operators that allow any of the factors to be checked.

2. Only the == and != operators can be used for string data. More string-related facilities are needed.

3. An implies operator would be useful for many goal expression, where A implies B is equivalent to
!A ||B .

4. Similarly there is inadequate support for lists. On occasion it would be useful to write expressions
involving say the list of implementors of a given CDL interface, for example a sensible default value
could be the first implementor. Associated with this is a need for an indirection operator.

5. Arguably extending the basic CDL expression syntax with lots of new operators is unnecessary, in-
stead expressions should just support Tcl command substitution and then component writers could
escape into Tcl scripts for complicated operations. This has some major disadvantages. First, the
inference engine would no longer have any sensible way of interpreting an expression to resolve a
conflict. Second, the component framework’s value propagation code keeps track of which options get
referenced in which expressions and avoids unnecessary re-evaluation of expressions; if expressions
can involve arbitrary Tcl code then there is no simple way to eliminate unnecessary recalculations,
with a potentially major impact on performance.

Note: The current implementation of the component framework uses 64 bit arithmetic on all host platforms.
Although this is adequate for current target architectures, it may cause problems in future. At some stage
it is likely that an arbitrary precision integer arithmetic package will be used instead.
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Functions

CDL expressions can contain calls to a set of built-in functions using the usual syntax, for example;

requires { !is_substr(CYGBLD_GLOBAL_CFLAGS, "-fno-rtti") }

The available function calls are as follows:

get_data(option)

This function can be used to obtain just the data part of a loaded configuration option, ignoring other
factors such as whether or not the option is active and enabled. It takes a single argument which should
be the name of a configuration option. If the specified option is not loaded in the current configuration
then the function returns 0, otherwise it returns the data part. Typically this function will only be used in
conjunction withis_active andis_enabled for fine-grained control over the various factors that make
up an option’s value.

is_active(option)

This function can be used to determine whether or not a particular configuration option is active. It takes
a single argument which should be the name of an option, and returns a boolean. If the specified option is
not loaded then the function will return false. Otherwise it will consider the state of the option’s parents
and evaluate any active_if properties, and return the option’s current active state. A typical use might be:

requires { is_active(CYGNUM_LIBC_MAIN_DEFAULT_STACK_SIZE) implies
(CYGNUM_LIBC_MAIN_DEFAULT_STACK_SIZE >= (16 * 1024)) }

In other words either the specified configuration option must be inactive, for example because the current
application does not use any related C library or POSIX functionality, or the stack size must be at least
16K.

The configuration system’s inference engine can attempt to satisfy constraints involvingis_active in
various different ways, for example by enabling or disabling parent components, or by examining active_if
properties and manipulating terms in the associated expressions.

is_enabled(option)

This function can be used to determine whether or not a particular configuration option is enabled. It
takes a single argument which should be the name of an option, and returns a boolean. If the specified
option is not loaded then the function will return false. Otherwise it will return the current boolean part
of the option’s value. The option’s active or inactive state is ignored. Typically this function will be used
in conjunction withis_active and possiblyget_data to provide fine-grained control over the various
factors that make up an option’s value.

is_loaded(option)

This function can be used to determine whether or not a particular configuration option is loaded. It takes
a single argument which should be the name of an option, and returns a boolean. If the argument is a
package then theis_loaded function provides little or no extra information, for example the following
two constraints are usually equivalent:

requires { CYGPKG_KERNEL }
requires { is_loaded(CYGPKG_KERNEL) }

However if the specified package is loaded but re-parented below a disabled component, or inactive as
a result of an active_if property, then the first constraint would not be satisfied but the second constraint
would. In other words theis_loaded makes it possible to consider in isolation one of the factors that are
considered when CDL expressions are evaluated.
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The configuration system’s inference engine will not automatically load or unload packages to satisfy
is_loaded constraints.

is_substr(haystack, needle)

This can be used to check whether or not a particular string is present in another string. It is used mainly
for manipulating compiler flags. The function takes two arguments, both of which can be arbitrary ex-
pressions, and returns a boolean.

is_substr has some understanding of word boundaries. If the second argument starts with a space char-
acter then that will match either a real space or the start of the string. Similarly if the second argument
ends with a space character then that will match a real space or the end of the string. For example, all of
the following conditions are satisfied:

is_substr("abracadabra", "abra")
is_substr("abracadabra", " abra")
is_substr("hocus pocus", " pocus")
is_substr("abracadabra", "abra ")

The first is an exact match. The second is a match because the leading space matches the start of the
string. The third is an exact match, with the leading space matching an actual space. The fourth is a match
because the trailing space matches the end of the string. However, the following condition is not satisfied.

is_substr("abracadabra", " abra ")

This fails to match at the start of the string because the trailing space is not matched by either a real space
or the end of the string. Similarly it fails to match at the end of the string.

If a constraint involvingis_substr is not satisfied and the first argument is a reference to a configuration
option, the inference engine will attempt to modify that option’s value. This can be achieved either by
appending the second argument to the current value, or by removing all occurrences of that argument
from the current value.

requires { !is_substr(CYGBLD_GLOBAL_CFLAGS, " -fno-rtti ") }
requires { is_substr(CYGBLD_GLOBAL_CFLAGS, " -frtti ") }

When data is removed the leading and trailing spaces will be left. For example, given an initial value of
<CYGBLD_GLOBAL_CFLAGSof -g -fno-rtti -O2 the result will be-g -O2 rather than-g-O2 .

If exact matches are needed, the functionis_xsubstr can be used instead.

is_xsubstr(haystack, needle)

This function checks whether or not the pattern string is an exact substring of the string being searched.
It is similar to is_substr but uses exact matching only. In other words, leading or trailing spaces have
to match exactly and will not match the beginning or end of the string being searched. The function takes
two arguments, both of which can be arbitrary expressions, and returns a boolean. The difference between
is_substr andis_xsubstr is illustrated by the following examples:

cdl_option MAGIC {
flavor data
default_value { "abracadabra" }

}
...
requires { is_substr(MAGIC, " abra") }
requires { is_xsubstr(MAGIC, " abra") }

The first goal will be satisfied because the leading space in the pattern matches the beginning of the string.
The second goal will not be satisfied initialy because there is no exact match, so the inference engine is
likely to update the value ofMAGICto abracadabra abra which does give an exact match.
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version_cmp(A, B)

This function is used primarily to check that a sufficiently recentversionof some other package is being
used. It takes two arguments, both of which can be arbitrary expressions. In practice usually one of the
arguments will be a reference to a package and the other will be a constant version string. The return value
is -1 if the first argument is a more recent version then the second, 0 if the two arguments correspond to
identical versions, and 1 if the first argument is an older version. For example the following constraint can
be used to indicate that the current package depends on kernel functionality that only became available in
version 1.3:

requires { version_cmp(CYGPKG_KERNEL, "v1.3") <= 0 }

Note: At this time it is not possible to define new functions inside a CDL script. Instead functions can only
be added at the C++ level, usually by extending libcdl itself. This is partly because there is more to CDL
functions than simple evaluation: associated with most functions is support for the inference engine, so
that if a constraint involving a function is not currently satisfied the system may be able to find a solution
automatically.

Goal Expressions

The arguments to certain properties, notably requires and active_if, constitute a goal expression. As with an
ordinary expression, all of the arguments get combined and then the expression parser takes over. The same
care has to be taken with constant strings and anything else that may get processed by the Tcl interpreter,
so often a goal expression is enclosed entirely in braces and the expression parsing code sees just a single
argument.

A goal expression is basically just a sequence of ordinary expressions, for example:

requires { CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
!CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT
!CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT }

This consists of three separate expressions, all of which should evaluate to a non-zero result. The same expres-
sion could be written as:

requires { CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS &&
!CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT &&
!CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT }

Alternatively the following would have much the same effect:

requires CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
requires !CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT
requires !CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT

Selecting between these alternatives is largely a stylistic choice. The first is slightly more concise than the
others. The second is more likely to appeal to mathematical purists. The third is more amenable to cutting and
pasting.

The result of evaluating a goal expression is a boolean. If any part of the goal expression evaluates to the integer
0 or an equivalent string then the result is false, otherwise it is true.
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The term “goal expression” relates to the component framework’s inference engine: it is a description of a
goal that should be satisfied for a conflict-free configuration. If a requires constraint is not satisfied then the
inference engine will examine the goal expression: if there is some way of changing the configuration that
does not introduce new conflicts and that will cause the goal expression to evaluate to true, the conflict can be
resolved.

The inference engine works with one conflict and hence one goal expression at a time. This means that there
can be slightly different behavior if a constraint is specified using a single requires property or several different
ones. Given the above example, suppose that none of the three conditions are satisfied. If a single goal expres-
sion is used then the inference engine might be able to satisfy only two of the three parts, but since the conflict
as a whole cannot be resolved no part of the solution will be applied. Instead the user will have to resolve the
entire conflict. If three separate goal expressions are used then the inference engine might well find solutions
to two of them, leaving less work for the user. On the other hand, if a single goal expression is used then the
inference engine has a bit more information to work with, and it might well find a solution to the entire conflict
where it would be unable to find separate solutions for the three parts. Things can get very complicated, and in
general component writers should not worry about the subtleties of the inference engine and how to manipulate
its behavior.

It is possible to write ambiguous goal expressions, for example:

requires CYGNUM_LIBC_RAND_SEED -CYGNUM_LIBC_RAND_TRACE_LEVEL> 5

This could be parsed in two ways:

requires ((CYGNUM_LIBC_RAND_SEED - CYGNUM_LIBC_RAND_TRACE_LEVEL)> 5)
requires CYGNUM_LIBC_RAND_SEED && ((-CYGNUM_LIBC_RAND_TRACE_LEVEL)> 5)

The goal expression parsing code will always use the largest ordinary expression for each goal, so the first
interpretation will be used. In such cases it is a good idea to use brackets and avoid possible confusion.

List Expressions

The arguments to the legal_values property constitute a goal expression. As with an ordinary and goal ex-
pressions, all of the arguments get combined and then the expression parser takes over. The same care has to
be taken with constant strings and anything else that may get processed by the Tcl interpreter, so often a list
expression is enclosed entirely in braces and the expression parsing code sees just a single argument.

Most list expressions take one of two forms:

legal_values <expr1 > <expr2 > <expr3 > ...
legal_values <expr1 > to <expr2 >

expr1 , expr2 and so on are ordinary expressions. Often these will be constants or references to calculated
options in the architectural HAL package, but it is possible to use arbitrary expressions when necessary. The
first syntax indicates a list of possible values, which need not be numerical. The second syntax indicates a
numerical range: both sides of theto must evaluate to a numerical value; if either side involves a floating point
number then any floating point number in that range is legal; otherwise only integer values are legal; ranges are
inclusive, so4 is a valid value given a list expression1 to ; if one or both sides of theto does not evaluate to a
numerical value then this will result in a run-time conflict. The following examples illustrate these possibilities:

legal_values { "red" "green" "blue" }
legal_values 1 2 4 8 16
legal_values 1 to CYGARC_MAXINT
legal_values 1.0 to 2.0

It is possible to combine the two syntaxes, for example:
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legal_values 1 2 4 to CYGARC_MAXINT -1024 -20.0 to -10

This indicates three legal values1, 2 and -1024 , one integer range4 to CYGARC_MAXINT, and one floating
point range-20.0 to -10.0 . In practice such list expressions are rarely useful.

The identifierto is not reserved, so it is possible to have a configuration option with that name (although it
violates every naming convention). Using that option in a list expression may however give unexpected results.

The graphical configuration tool uses the legal_values list expression to determine how best to let
users manipulate the option’s value. Different widgets will be appropriate for different lists, so
{ "red" "green" "blue" } might involve a pull-down option menu, and1 to 16 could involve a spinner.
The exact way in which legal_values lists get mapped on to GUI widgets is not defined and is subject to
change at any time.

As with goal expressions, list expressions can be ambiguous. Consider the following hypothetical example:

legal_values CYGNUM_LIBC_RAND_SEED -CYGNUM_LIBC_RAND_TRACE_LEVEL

This could be parsed in two ways:

legal_values (CYGNUM_LIBC_RAND_SEED - CYGNUM_LIBC_RAND_TRACE_LEVEL)
legal_values (CYGNUM_LIBC_RAND_SEED) (-CYGNUM_LIBC_RAND_TRACE_LEVEL)

Both are legal. The list expression parsing code will always use the largest ordinary expression for each el-
ement, so the first interpretation will be used. In cases like this it is a good idea to use brackets and avoid
possible confusion.

Interfaces
For many configurability requirements, options provide sufficient expressive power. However there are times
when a higher level of abstraction is appropriate. As an example, suppose that some package relies on the
presence of code that implements the standard kernel scheduling interface. However the requirement is no
more stringent than this, so the constraint can be satisfied by the mlqueue scheduler, the bitmap scheduler, or
any additional schedulers that may get implemented in future. A first attempt at expressing the dependency
might be:

requires CYGSEM_KERNEL_SCHED_MLQUEUE || CYGSEM_KERNEL_SCHED_BITMAP

This constraint will work with the current release, but it is limited. Suppose there is a new release of the kernel
which adds another scheduler such as a deadline scheduler, or suppose that there is a new third party package
which adds such a scheduler. The package containing the limited constraint would now have to be updated and
another release made, with possible knock-on effects.

CDL interfaces provide an abstraction mechanism: constraints can be expressed in terms of an abstract concept,
for example “scheduler”, rather than specific implementations such asCYGSEM_KERNEL_SCHED_MLQUEUEand
CYGSEM_KERNEL_SCHED_BITMAP. Basically an interface is a calculated configuration option:

cdl_interface CYGINT_KERNEL_SCHEDULER {
display "Number of schedulers in this configuration"
...

}

The individual schedulers can then implement this interface:

cdl_option CYGSEM_KERNEL_SCHED_MLQUEUE {
display "Multi-level queue scheduler"
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default_value 1
implements CYGINT_KERNEL_SCHEDULER
...

}

cdl_option CYGSEM_KERNEL_SCHED_BITMAP {
display "Bitmap scheduler"
default_value 0
implements CYGINT_KERNEL_SCHEDULER
...

}

Future schedulers can also implement this interface. The value of an interface, for the purposes of expression
evaluation, is the number of active and enabled options which implement this interface. Packages which rely
on the presence of a scheduler can impose constraints such as:

requires CYGINT_KERNEL_SCHEDULER

If none of the schedulers are enabled, or if the kernel package is not loaded, thenCYGINT_KERNEL_SCHEDULER

will evaluate to0. If at least one scheduler is active and enabled then the constraint will be satisfied.

Because interfaces have a calculated value determined by the implementors, the default_value and calculated
properties are not applicable and should not appear in the body of acdl_interface command. Interfaces
have thedata flavor by default, but thebool andbooldata flavors may be specified instead. Abool interface
is disabled if there are no active and enabled implementors, otherwise it is enabled. Abooldata interface is
disabled if there are no active and enabled implementors, otherwise it is enabled and has a value corresponding
to the number of these implementors. Other properties such as requires and compile can be used as normal.

Some component writers will not want to use interfaces in this way. The reasoning is that their code will only
have been tested with the existing schedulers, so the requires constraint needs to be expressed in terms of those
schedulers; it is possible that the component will still work with a new scheduler, but there are no guarantees.
Other component writers may take a more optimistic view and assume that their code will work with any
scheduler until proven otherwise. It is up to individual component writers to decide which approach is most
appropriate in any given case.

One common use for interfaces is to describe the hardware functionality provided by a given target. For ex-
ample the CDL scripts for a TCP/IP package might want to know whether or not the target hardware has an
ethernet interface. Generally it is not necessary for the TCP/IP stack to know exactly which ethernet hardware
is present, since there should be a device driver which implements the appropriate functionality. In CDL terms
the device drivers should implement an interfaceCYGHWR_NET_DRIVERS, and the CDL scripts for the TCP/IP
stack can use this in appropriate expressions.

Note: Using the term interface for this concept is sometimes confusing, since the term has various
other meanings as well. In practice, it is often correct. If there is a configuration option that implements
a given CDL interface, then usually this option will enable some code that provides a particular
interface at the C or C++ level. For example an ethernet device driver implements the CDL interface
CYGHWR_NET_DRIVERS, and also implements a set of C functions that can be used by the TCP/IP stack.
Similarly CYGSEM_KERNEL_SCHED_MLQUEUEimplements the CDL interface CYGINT_KERNEL_SCHEDULERand
also provides the appropriate scheduling functions.
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Updating the ecos.db database
The current implementation of the component framework requires that all packages be present in a single
component repository and listed in that repository’s ecos.db database. This is not generally a problem for
application developers who can consider the component repository a read-only resource, except when adding
or removing packages via the administration tool. However it means that component writers need to do their
development work inside a component repository as well, and update the database with details of their new
package or packages. Future enhancements to the component framework may allow new components to be
developed outside a repository.

Like most files related to the component framework, the ecos.db database is actually a Tcl script. Typical
package entries would look like this:

package CYGPKG_LIBC {
alias { "C library" libc clib clibrary }
directory language/c/libc
script libc.cdl

description "
This package enables compatibility with the ISO C standard - ISO/IEC
9899:1990. This allows the user application to use well known standard
C library functions, and in eCos starts a thread to invoke the user
function main()"
}

package CYGPKG_IO_PCI {
alias { "PCI configuration library" io_pci }
directory io/pci
script io_pci.cdl
hardware

description "
This package contains the PCI configuration library."

}

The package command takes two arguments, a name and a body. The name must be the same as in the
cdl_package command in the package’s top-level CDL script. The body can contain the following five com-
mands:alias , directory , script , hardware anddescription .

alias

Each package should have one or more aliases. The first alias is typically used when listing the known
packages, because a string likeC library is a bit easier to read and understand thanCYGPKG_LIBC. The
other aliases are not used for output, but are accepted on input. For example the ecosconfig command-line
tool will acceptadd libc as an option, as well asadd CYGPKG_LIBC.

directory

This is used to specify the location of the package relative to the root of the component repository. It should
be noted that in the current component framework this location cannot be changed in subsequent releases
of the package: if for some reason it is desirable to install a new release elsewhere in the repository, all the
old versions must first be uninstalled; the database cannot hold two separate locations for one package.

script

Thescript command specifies the location of the package’s top-level CDL script, in other words the one
containing thecdl_package definition. If the package follows thedirectory layout conventionsthen this
script will be in thecdl sub-directory, otherwise it will be relative to the package’s top-level directory.
Again once a release has been made this file should not change in later releases. In practice the top-level
script is generally named after the package itself, so changing its name is unlikely to be useful.
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hardware

Packages which are tied to specific hardware, for example device drivers and HAL packages, should
indicate this in both thecdl_package command of the CDL script and in the database entry.

description

This should give a brief description of the package. Typically the text for the description property in the
cdl_package command will be re-used.

Note: Most of the information in the ecos.db file could be obtained by a relatively simple utility. This would
be passed a single argument identifying a package’s top-level CDL script. The directory path relative to the
component repository root could be determined from the filename. The name, description and hardware

fields could be obtained from the script’s cdl_package command. The display property would supply the
first alias, additional aliases could be obtained by extending the syntax of that property or by other means.
Something along these lines may be provided by a future release of the component framework.

Currently the ecos.db database also holds information about the various targets. When porting to a new target it
will be necessary to add information about the target to the database, as well as the details of the new platform
HAL package and any related packages.

Notes
1. It is possible that some versions of the Tcl interpreter will instead produce a result

of 54 when asked to multiply six by nine. Appropriate reference documentation
(http://www.douglasadams.com/creations/hhgg.html) should be consulted for more information on why
42 is in fact the correct answer.
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Some CDL properties describe the consequences of manipulating configuration options. There are two main
types of consequences. Typically enabling a configuration option results in one or more#define’s in a con-
figuration header file, and properties that affect this include define, define_proc and no_define. Enabling a
configuration option can also affect the build process, primarily determining which files get built and added to
the appropriate library. Properties related to the build process include compile and make. This chapter describes
the whole build process, including details such as compiler flags and custom build steps.

Part of the overall design of the eCos component framework is that it can interact with a number of different
build systems. The most obvious of these is GNU make:the component framework can generate one or more
makefiles, and the user can then build the various packages simply by invoking make. However it should also
be possible to build eCos by other means: the component framework can be queried about what is involved in
building a given configuration, and this information can then be fed into the desired build system. Component
writers should be aware of this possibility. Most packages will not be affected because the compile property
can be used to provide all the required information, but care has to be taken when writing custom build steps.

Build Tree Generation
It is necessary to create an eCos configuration before anything can be built. With some tools such as the
graphical configuration tool this configuration will be created in memory, and it is not essential to produce an
ecos.ecc savefile first (although it is still very desirable to generate such a savefile at some point, to allow
the configuration to be re-loaded later on). With other tools the savefile is generated first, for example using
ecosconfig new , and then a build tree is generated usingecosconfig tree . The savefile contains all the
information needed to recreate a configuration.

An eCos build actually involves three separate trees. The component repository acts as the source tree, and for
application developers this should be considered a read-only resource. The build tree is where all intermediate
files, especially object files, are created. The install tree is where the main librarylibtarget.a , the exported
header files, and similar files end up. Following a successful build it is possible to take just the install tree and
use it for developing an application: none of the files in the component repository or the build tree are needed
for that. The build tree will be needed again only if the user changes the configuration. However the install tree
does not contain copies of all of the documentation for the various packages, instead the documentation is kept
only in the component repository.

By default the build tree, the install tree, and theecos.ecc savefile all reside in the same directory tree. This
is not a requirement, both the install tree and the savefile can be anywhere in the file system.

It is worth noting that the component framework does not separate the usualmake andmake install stages.
A build always populates the install tree, and anymake install step would be redundant.

The install tree will always begin with two directories,include for the exported header files andlib for the
main library libtarget.a and other files such as the linker script. In addition there will be a subdirectory
include/pkgconf containing the configuration header files, which are generated or updated at the same time
the build tree is created or updated. More details of header file generation are given below. Additionalinclude

subdirectories such assys andcyg/kernel will be created during the first build, when each package’s exported
header files are copied to the install tree. The install tree may also end up with additional subdirectories during
a build, for example as a result of custom build steps.

The component framework does not define the structure of the build tree, and this may vary between build
systems. It can be assumed that each package in the configuration will have its own directory in the build tree,
and that this directory will be used for storing the package’s object files and as the current directory for any
build steps for that package. This avoids problems when custom build steps from different packages generate
intermediate files which happen to have the same name.
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Some build systems may allow application developers to copy a source file from the component repository
to the build tree and edit the copy. This allows users to experiment with small changes, for example to add
a couple of lines of debugging to a package, without having to modify the master copy in the component
repository which could be shared by several projects or several people. Functionality such as this is transparent
to component writers, and it is the responsibility of the build system to make sure that the right thing happens.

Note: There are some unresolved issues related to the build tree and install tree. Specifically, when up-
dating an existing build or install tree, what should happen to unexpected files or directories? Suppose the
user started with a configuration that included the math library, and the install tree contains header files
include/math.h and include/sys/ieeefp.h . The user then removed the math library from the configura-
tion and is updating the build tree. It is now desirable to remove these header files from the install tree,
so that if any application code still attempts to use the math library this will fail at compile time rather than
at link time. There will also be some object files in the existing libtarget.a library which are no longer
appropriate, and there may be other files in the install tree as a result of custom build steps. The build tree
will still contain a directory for the math library, which no longer serves any purpose.

However, it is also possible that some of the files in the build tree or the install tree were placed there by
the user, in which case removing them automatically would be a bad idea.

At present the component framework does not keep track of exactly what should be present in the build
and install trees, so it cannot readily determine which files or library members are obsolete and can safely
be removed, and which ones are unexpected and need to be reported to the user. This will be addressed
in a future release of the system.

Configuration Header File Generation
Configuration options can affect a build in two main ways. First, enabling a configuration option or other
CDL entity can result in various files being built and added to a library, thus providing functionality to the
application code. However this mechanism can only operate at a rather coarse grain, at the level of entire
source files. Hence the component framework also generates configuration header files containing mainly C
preprocessor#define directives. Package source code can then#include the appropriate header files and use
#if , #ifdef and#ifndef directives to adapt accordingly. In this way configuration options can be used to
enable or disable entire functions within a source file or just a single line, whichever is appropriate.

The configuration header files end up in theinclude/pkgconf subdirectory of the install tree. There will be
one header file for the system as a whole,pkgconf/system.h , and there will be additional header files for
each package, for examplepkgconf/kernel.h . The header files are generated when creating or updating the
build and install trees, which needs to happen after every change to the configuration.

The component framework processes each package in the configuration one at a time. The exact order in
which the packages are processed is not defined, so the order in which#define’s will end up in the global
pkgconf/system.h header may vary. However for any given configuration the order should remain consistent
until packages are added to or removed from the system. This avoids unnecessary changes to the global header
file and hence unnecessary rebuilds of the packages and of application code because of header file dependency
handling.

Within a given package the various components, options and interfaces will be processed in the order in which
they were defined in the corresponding CDL scripts. Typically the data in the configuration headers consists
only of a sequence of#define’s so the order in which these are generated is irrelevant, but some properties
such as define_proc can be used to add arbitrary data to a configuration header and hence there may be depen-
dencies on the order. It should be noted that re-parenting an option below some other package has no effect on
which header file will contain the corresponding#define : the preprocessor directives will always end up in
the header file for the package that defines the option, or in the global configuration header.
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There are six properties which affect the process of generating header files:define_header, no_define, de-
fine_format, define, if_define, anddefine_proc.

The define_header property can only occur in the body of acdl_package command and specifies the name of
the header file which should contain the package’s configuration data, for example:

cdl_package <some_package > {
...
define_header xyzzy.h

}

Given such a define_header property the component framework will use the filepkgconf/xyzzy.h for the
package’s configuration data. If a package does not have a define_header property then a suitable file name is
constructed from the package’s name. This involves:

1. All characters in the package name up to and including the first underscore are removed. For example
CYGPKG_KERNELis converted toKERNEL, andCYGPKG_HAL_ARMis converted toHAL_ARM.

2. Any upper case letters in the resulting string will be converted to lower case, yielding e.g.kernel and
hal_arm .

3. A .h suffix is appended, yielding e.g.kernel.h andhal_arm.h .

Because of the naming restrictions on configuration options, this should result in a valid filename. There is a
small possibility of a file name class, for exampleCYGPKG_PLUGHandCYGPKG_plugh would both end up trying
to use the same header filepkgconf/plugh.h , but the use of lower case letters for package names violates the
naming conventions. It is not legal to use the define_header property to put the configuration data for several
packages in a single header file. The resulting behaviour is undefined.

Once the name of the package’s header file has been determined and the file has been opened, the various
components, options and interfaces in the package will be processed starting with the package itself. The
following steps are involved:

1. If the current option or other CDL entity is inactive or disabled, the option is ignored for the purposes of
header file generation.#define’s are only generated for options that are both active and enabled.

2. The next step is to generate a default#define for the current option. If this option has a no_define property
then the default#define is suppressed, and processing continues for define, if_define and define_proc
properties.

a.The header file appropriate for the default#define is determined. For acdl_package this will be
pkgconf/system.h , for any other option this will be the package’s own header file. The intention here
is that packages and application code can always determine which packages are in the configuration
by #include’ing pkgconf/system.h . The C preprocessor lacks any facilities for including a header
file only if it exists, and taking appropriate action otherwise.

b. For options with the flavorsbool or none , a single#define will be generated. This takes the form:

#define <option > 1

For example:

#define CYGFUN_LIBC_TIME_POSIX 1

Package source code can check whether or not an option is active and enabled by using the#ifdef ,
#ifndef or #if defined(...) directives.
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c. For options with the flavorsdata or booldata , either one or two#define’s will be generated. The
first of these may be affected by a define_format property. If this property is not defined then the first
#define will take the form:

#define <option > <value >

For example:

#define CYGNUM_LIBC_ATEXIT_HANDLERS 32

Package source code can examine this value using the#if directive, or by using the symbol in code
such as:

for (i = 0; i < CYGNUM_LIBC_ATEXIT_HANDLERS; i++) {
...

}

It must be noted that the#define will be generated only if the corresponding option is both active
and enabled. Options with thedata flavor are always enabled but may not be active. Code like the
above should be written only if it is known that the symbol will always be defined, for example if
the corresponding source file will only get built if the containing component is active and enabled.
Otherwise the use of additional#ifdef or similar directives will be necessary.

d. If there is a define_format property then this controls how the option’s value will appear in the header
file. Given a format string such as%08x and a value 42, the component framework will execute the
Tcl commandformat %08x 42 and the result will be used for the#define’s value. It is the respon-
sibility of the component writer to make sure that this Tcl command will be valid given the format
string and the legal values for the option.

e. In addition a second#define may or may not be generated. This will take the form:

#define <option >_<value >

For example:

#define CYGNUM_LIBC_ATEXIT_HANDLERS_32

The#define will be generated only if it would result in a valid C preprocessor symbol. If the value
is a string such as"/dev/ser0" then the#define would be suppressed. This second#define is not
particularly useful for numerical data, but can be valuable in other circumstances. For example if the
legal values for an optionXXX_COLORarered , green andblue then code like the following can be
used:

#ifdef XXX_COLOR_red
...

#endif
#ifdef XXX_COLOR_green

...
#endif
#ifdef XXX_COLOR_blue

...
#endif

The expression syntax provided by the C preprocessor is limited to numerical data and cannot perform
string comparisons. By generating two#define’s in this way it is possible to work around this lim-
itation of the C preprocessor. However some care has to be taken: if a component writer also defined
a configuration optionXXX_COLOR_green then there will be confusion. Since such a configuration
option violates the naming conventions, the problem is unlikely to arise in practice.
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3. For some options it may be useful to generate one or more additional#define’s or, in conjunction with
the no_define property, to define a symbol with a name different from the option’s name. This can be
achieved with the define property, which takes the following form:

define [-file= <filename >] [-format= <format >] <symbol >

For example:

define FOPEN_MAX

This will result in something like:

#define FOPEN_MAX 8
#define FOPEN_MAX_8

The specified symbol must be a valid C preprocessor symbol. Normally the#define will end up in the
same header file as the default one, in other wordspkgconf/system.h in the case of acdl_package ,
or the package’s own header file for any other option. The-file option can be used to change this. At
present the only legal value issystem.h , for example:

define -file=system.h <symbol >

This will cause the#define to end up in the global configuration header rather than in the package’s own
header. Use of this facility should be avoided since it is very rarely necessary to make options globally
visible.

The define property takes another option,-format , to provide a format string.

define -format=%08x <symbol >

This should only be used for options with thedata or booldata flavor, and has the same effect as the
define_format property has on the default#define .

define properties are processed in the same way the default#define . For options with thebool or none

flavors a single#define will be generated using the value1. For options with thedata or booldata

flavors either one or two#define’s will be generated.

4. After processing all define properties, the component framework will look for any if_define properties.
These take the following form:

if_define [-file= <filename >] <symbol1 > <symbol2 >

For example:

if_define CYGSRC_KERNEL CYGDBG_USE_ASSERTS

The following will be generated in the configuration header file:

#ifdef CYGSRC_KERNEL
# define CYGDBG_USE_ASSERTS
#endif

Typical kernel source code would begin with the following construct:

#define CYGSRC_KERNEL 1
#include <pkgconf/kernel.h >

#include <cyg/infra/cyg_ass.h >

The infrastructure header filecyg/infra/cyg_ass.h only checks for symbols such as
CYGDBG_USE_ASSERTS, and has no special knowledge of the kernel or any other package. The if_define
property will only affect code that defines the symbolCYGSRC_KERNEL, so typically only kernel source
code. If the option is enabled then assertion support will be enabled for the kernel source code only. If the
option is inactive or disabled then kernel assertions will be disabled. Assertions in other packages are not
affected. Thus the if_define property allows control over assertions, tracing, and similar facilities at the
level of individual packages, or at finer levels such as components or even single source files if desired.

61



Chapter 4. The Build Process

Note: Current eCos packages do not yet make use of this facility. Instead there is a single global con-
figuration option CYGDBG_USE_ASSERTSwhich is used to enable or disable assertions for all packages.
This issue should be addressed in a future release of the system.

As with the define property, the if_define property takes an option-file with a single legal valuesys-

tem.h . This allows the output to be redirected topkgconf/system.h if and when necessary.

5. The final property that is relevant to configuration header file generation is define_proc. This takes a
single argument, a Tcl fragment that can add arbitrary data to the global headerpkgconf/system.h and
to the package’s own header. When the define_proc script is invoked two variables will be set up to
allow access to these headers:cdl_header will be a channel to the package’s own header file, for example
pkgconf/kernel.h ; cdl_system_header will be a channel topkgconf/system.h . A typical define_proc
script will use the Tclputs command to output data to one of these channels, for example:

cdl_option <name> {
...
define_proc {

puts $::cdl_header "#define XXX 1"
}

}

Note: In the current implementation the use of define_proc is limited because the Tcl script cannot
access any of the configuration data. Therefore the script is limited to writing constant data to the
configuration headers. This is a major limitation which will be addressed in a future release of the
component framework.

Note: Generating C header files with #define’s for the configuration data suffices for existing packages
written in some combination of C, C++ and assembler. It can also be used in conjunction with some
other languages, for example by first passing the source code through the C preprocessor and feeding the
result into the appropriate compiler. In future versions of the component framework additional programming
languages such as Java may be supported, and the configuration data may also be written to files in some
format other than C preprocessor directives.

Note: At present there is no way for application or package source code to get hold of all the config-
uration details related to the current hardware. Instead that information is spread over various different
configuration headers for the HAL and device driver packages, with some of the information going into
pkgconf/system.h . It is possible that in some future release of the system there will be another global
configuration header file pkgconf/hardware.h which either contains the configuration details for the vari-
ous hardware-specific packages or which #include’s all the hardware-specific configuration headers. The
desirability and feasibility of such a scheme are still to be determined. To avoid future incompatibility prob-
lems as a result of any such changes, it is recommended that all hardware packages (in other packages
containing the hardware property) use the define_header property to specify explicitly which configuration
header should be generated.
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The system.h Header

Typically configuration header files are#include’d only by the package’s source code at build time, or by a
package’s exported header files if the interface provided by the package may be affected by a configuration
option. There should be no need for application code to know the details of individual configuration options,
instead the configuration should specifically meet the needs of the application.

There are always exceptions. Application code may want to adapt to configuration options, for example to
do different things for ROM and RAM booting systems, or when it is necessary to support several different
target boards. This is especially true if the code in question is really re-usable library code which has not been
converted to an eCos package, and hence cannot use any CDL facilities.

A major problem here is determining which packages are in the configuration: attempting to#include a
header file such aspkgconf/net.h when it is not known for certain that that particular package is part of the
configuration will result in compilation errors. The global header filepkgconf/system.h serves to provide
such information, so application code can use techniques like the following:

#include <pkgconf/system.h >

#ifdef CYGPKG_NET
# include <pkgconf/net.h >

#endif

This will compile correctly irrespective of the eCos configuration, and subsequent code can use#ifdef or
similar directives onCYGPKG_NETor any of the configuration options in that package.

In addition to determining whether or not a package is present, the global configuration header file can also be
used to find out the specific version of a package that is being used. This can be useful if a more recent version
exports additional functionality. It may also be necessary to adapt to incompatible changes in the exported
interface or to changes in behaviour. For each package the configuration system will typically#define three
symbols, for example for a V1.3.1 release:

#define CYGNUM_NET_VERSION_MAJOR 1
#define CYGNUM_NET_VERSION_MINOR 3
#define CYGNUM_NET_VERSION_RELEASE 1

There are a number of problems associated with such version#define’s . The first restriction is that the
package must follow the standard naming conventions, so the package name must be of the formxxxPKG_yyy .
The three characters immediately preceding the first underscore must bePKG, and will be replaced withNUM

when generating the version#define’s . If a package does not follow the naming convention then no version
#define’s will be generated.

Assuming the package does follow the naming conventions, the configuration tools will always generate
three version#define’s for the major, minor, and release numbers. The symbol names are obtained from
the package name by replacingPKGwith NUMand appending_VERSION_MAJOR, _VERSION_MINORand_VER-

SION_RELEASE. It is assumed that the resulting symbols will not clash with any configuration option names.
The values for the#define’s are determined by searching the version string for sequences of digits, optionally
preceded by a minus sign. It is possible that some or all of the numbers are absent in any given version string,
in which case-1 will be used in the#define . For example, given a version string ofV1.12beta , the major
version number is1, the minor number is12, and the release number is-1 . Given a version string ofbeta all
three numbers would be set to-1 .

There is special case code for the versioncurrent , which typically corresponds to a development version
obtained via anonymous CVS or similar means. The configuration system has special built-in knowledge of
this version, and will assume it is more recent than any specific release number. The global configuration
header defines a special symbolCYGNUM_VERSION_CURRENT, and this will be used as the major version number
when versioncurrent of a package is used:
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#define CYGNUM_VERSION_CURRENT 0x7fffff00
...
#define CYGNUM_INFRA_VERSION_MAJOR CYGNUM_VERSION_CURRENT
#define CYGNUM_INFRA_VERSION_MINOR -1
#define CYGNUM_INFRA_VERSION_RELEASE -1

The large number used forCYGNUM_VERSION_CURRENTshould ensure that major version comparisons work as
expected, while still allowing for a small amount of arithmetic in case that proves useful.

It should be noted that this implementation of version#define’s will not cope with all version number
schemes. However for many cases it should suffice.

Building eCos
The primary goal of an eCos build is to produce the librarylibtarget.a . A typical eCos build will also
generate a number of other targets:extras.o , startup codevectors.o , and a linker script. Some packages
may cause additional libraries or targets to be generated. The basic build process involves a number of different
phases with corresponding priorities. There are a number of predefined priorities:

Priority Action

0 Export header files

100 Process compile properties

and most make_object custom build steps

200 Generate libraries

300 Process make custom build steps

Generation of theextras.o file, the startup code and the linker script actually happens via make custom build
steps, typically defined in appropriate HAL packages. The component framework has no special knowledge of
these targets.

By default custom build steps for a make_object property happen during the same phase as most compilations,
but this can be changed using a-priority option. Similarly custom build steps for a make property happen at
the end of a build, but this can also be changed with a-priority option. For example a priority of 50 can be
used to run a custom build step between the header file export phase and the main compilation phase. Custom
build steps are discussed in more detail below.

Some build systems may run several commands of the same priority in parallel. For example files listed in
compile properties may get compiled in parallel, concurrently with make_object custom build steps with de-
fault priorities. Since most of the time for an eCos build involves processing compile properties, this allows
builds to be speeded up on suitable host hardware. All build steps for a given phase will complete before the
next phase is started.

Updating the Build Tree

Some build systems may involve a phase before the header files get exported, to update the build and install
trees automatically when there has been a change to the configuration savefileecos.ecc . This is useful mainly
for application developers using the command line tools: it would allow users to create the build tree only
once, and after any subsequent configuration changes the tree would be updated automatically by the build
system. The facility would be analogous to the--enable-maintainer-mode option provide by the autoconf
and automake programs. At present no eCos build system implements this functionality, but it is likely to be
added in a future release.
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Exporting Public Header Files

The first compulsory phase involves making sure that there is an up to date set of header files in the install tree.
Each package can contain some number of header files defining the exported interface. Applications should
only use exported functionality. A package can also contain some number of private header files which are only
of interest to the implementation, and which should not be visible to application code. The various packages
that go into a particular configuration can be spread all over the component repository. In theory it might be
possible to make all the exported header files accessible by having a lengthy-I header file search path, but this
would be inconvenient both for building eCos and for building applications. Instead all the relevant header files
are copied to a single location, theinclude subdirectory of the install tree. The process involves the following:

1. The install tree, for example /usr/local/ecos/install , and its include subdirectory
/usr/local/ecos/install/include will typically be created when the build tree is generated or
updated. At the same time configuration header files will be written to thepkgconf subdirectory, for
example /usr/local/ecos/include/pkgconf , so that the configuration data is visible to all the
packages and to application code that may wish to examine some of the configuration options.

2. Each package in the configuration is examined for exported header files. The exact order in which the
packages are processed is not defined, but should not matter.

a. If the package has aninclude_filesproperty then this lists all the exported header files:

cdl_package <some_package > {
...
include_files header1.h header2.h

}

If no arguments are given then the package does not export any header files.

cdl_package <some_package > {
...
include_files

}

The listed files may be in aninclude subdirectory within the package’s hierarchy, or they may be
relative to the package’s toplevel directory. The include_files property is intended mainly for very
simple packages. It can also be useful when converting existing code to an eCos package, to avoid
rearranging the sources.

b. If there is no include_files property then the component framework will look for aninclude sub-
directory in the package, as per the layout conventions. All files, including those in subdirectories,
will be treated as exported header files. For example, the math library package contains filesin-

clude/math.h andinclude/sys/ieeefp.h , both of which will be exported to the install tree.

c. As a last resort, if there is neither an include_files property nor aninclude subdirectory, the compo-
nent framework will search the package’s toplevel directory and all of its subdirectories for files with
one of the following suffixes:.h , .hxx , .inl or .inc . All such files will be interpreted as exported
header files.

This last resort rule could cause confusion for packages which have no exported header files but which
do contain one or more private header files. For example a typical device driver simply implements
an existing interface rather than define a new one, so it does not need to export a header file. However
it may still have one or more private header files. Such packages should use an include_files property
with no arguments.
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3. If the package has one or more exported header files, the next step is to determine where the files should end
up. By default all exported header files will just end up relative to the install tree’sinclude subdirectory.
For example the math library’smath.h header would end up as/usr/local/ecos/include/math.h , and
thesys/ieeefp.h header would end up as/usr/local/ecos/include/sys/ieeefp.h . This behaviour
is correct for packages like the C library where the interface is defined by appropriate standards. For other
packages this behaviour can lead to file name clashes, and theinclude_dirproperty should be used to avoid
this:

cdl_package CYGPKG_KERNEL {
include_dir cyg/kernel

}

This means that the kernel’s exported header fileinclude/kapi.h should be copied to
/usr/local/ecos/include/cyg/kernel/kapi.h , where it is very unlikely to clash with a header file
from some other package.

4. For typical application developers there will be little or no need for the installed header files to change after
the first build. Changes will be necessary only if packages are added to or removed from the configuration.
For component writers, the build system should detect changes to the master copy of the header file source
code and update the installed copies automatically during the next build. The build system is expected to
perform a header file dependency analysis, so any source files affected should get rebuilt as well.

5. Some build systems may provide additional support for application developers who want to make minor
changes to a package, especially for debugging purposes. A header file could be copied from the compo-
nent repository (which for application developers is assumed to be a read-only resource) into the build tree
and edited there. The build system would detect a more recent version of such a header file in the build
tree and install it. Care would have to be taken to recover properly if the modified copy in the build tree is
subsequently removed, in order to revert to the original behaviour.

6. When updating the install tree’sinclude subdirectory, the build tree may also perform a clean-up opera-
tion. Specifically, it may check for any files which do not correspond to known exported header files and
delete them.

Note: At present there is no defined support in the build system for defining custom build steps that
generate exported header files. Any attempt to use the existing custom build step support may fall foul of
unexpected header files being deleted automatically by the build system. This limitation will be addressed
in a future release of the component framework, and may require changing the priority for exporting header
files so that a custom build step can happen first.

Compiling

Once there are up to date copies of all the exported header files in the build tree, the main build can proceed.
Most of this involves compiling source files listed in compile properties in the CDL scripts for the various
packages, for example:

cdl_package CYGPKG_ERROR {
display "Common error code support"
compile strerror.cxx
...

}

compile properties may appear in the body of acdl_package , cdl_component , cdl_option or
cdl_interface . If the option or other CDL entity is active and enabled, the property takes effect. If the
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option is inactive or disabled the property is ignored. It is possible for a compile property to list multiple
source files, and it is also possible for a given CDL entity to contain multiple compile properties. The
following three examples are equivalent:

cdl_option <some_option > {
...
compile file1.c file2.c file3.c

}

cdl_option <some_option > {
...
compile file1.c
compile file2.c
compile file3.c

}

cdl_option <some_option > {
...
compile file1.c file2.c
compile file3.c

}

Packages that follow the directory layout conventions should have a subdirectorysrc , and the component
framework will first look for the specified files there. Failing that it will look for the specified files relative to
the package’s root directory. For example if a package contains a source filestrerror.cxx then the following
two lines are equivalent:

compile strerror.cxx
compile src/strerror.cxx

In the first case the component framework will find the file immediately in the packagessrc subdirectory. In the
second case the framework will first look for a filesrc/src/strerror.cxx , and then forstr/strerror.cxx

relative to the package’s root directory. The result is the same.

The file names may be relative paths, allowing the source code to be split over multiple directories. For example
if a package contains a filesrc/sync/mutex.cxx then the corresponding CDL entry would be:

compile sync/mutex.cxx

All the source files relevant to the current configuration will be identified when the build tree is generated or
updated, and added to the appropriate makefile (or its equivalent for other build systems). The actual build will
involve a rule of the form:

<object file > : <source file >

$(CC) -c $(INCLUDE_PATH) $(CFLAGS) -o $@ $<

The component framework has built-in knowledge for processing source files written in C, C++ or assembler.
These should have a.c , .cxx and.S suffix respectively. The current implementation has no simple mechanism
for extending this with support for other languages or for alternative suffixes, but this should be addressed in a
future release.

The compiler command that will be used is something likearm-elf-gcc . This consists of a command prefix,
in this casearm-elf , and a specific command such asgcc . The command prefix will depend on the target
architecture and is controlled by a configuration option in the appropriate HAL package. It will have a sensible
default value for the current architecture, but users can modify this option when necessary. The command
prefix cannot be changed on a per-package basis, since it is usually essential that all packages are built with a
consistent set of tools.
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The$(INCLUDE_PATH) header file search path consists of at least the following:

1. Theinclude directory in the install tree. This allows source files to access the various header files exported
by all the packages in the configuration, and also the configuration header files.

2. The current package’s root directory. This ensures that all files in the package are accessible at build time.

3. The current package’ssrc subdirectory, if it is present. Generally all files to be compiled are located in or
below this directory. Typically this is used to access private header files containing implementation details
only.

The compiler flags$(CFLAGS) are determined in two steps. First the appropriate HAL package will provide
a configuration option defining the global flags. Typically this includes flags that are needed for the target
processor, for example-mcpu=arm9 , various flags related to warnings, debugging and optimization, and flags
such as-finit-priority which are needed by eCos itself. Users can modify the global flags option as
required. In addition it is possible for existing flags to be removed from and new flags to be added to the
current set on a per-package basis, again by means of user-modifiable configuration options. More details are
given below.

Component writers can assume that the build system will perform full header file dependency analysis, in-
cluding dependencies on configuration headers, but the exact means by which this happens is implementation-
defined. Typical application developers are unlikely to modify exported or private header files, but configura-
tion headers are likely to change as the configuration is changed to better meet the needs of the application.
Full header file dependency analysis also makes things easier for the component writers themselves.

The current directory used during a compilation is an implementation detail of the build system. However it
can be assumed that each package will have its own directory somewhere in the build tree, to prevent file name
clashes, that this will be the current directory, and that intermediate object files will end up here.

Generating the Libraries

Once all the compile and make_object properties have been processed and the required object files have been
built or rebuilt, these can be collected together in one or more libraries. The archiver will be the ar command
corresponding to the current architecture, for example powerpc-eabi-ar. By default al of the object files will
end up in a single librarylibtarget.a . This can be changed on a per-package basis using thelibrary property
in the body of the correspondingcdl_package command, for example:

cdl_package <SOME_PACKAGE> {
...
library libSomePackage.a

}

However using different libraries for each package should be avoided. It makes things more difficult for ap-
plication developers since they now have to link the application code with more libraries, and possibly even
change this set of libraries when packages are added to or removed from the configuration. The use of a single
library libtarget.a avoids any complications.

It is also possible to change the target library for individual files, using a-library option with the correspond-
ing compile or make_object property. For example:

compile -library=libSomePackage.a hello.c
make_object -library=libSomePackage.a {

...
}
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Again this should be avoided because it makes application development more difficult. There is one special
library which can be used freely,libextras.a , which is used to generate theextras.o file as described below.

The order in which object files end up in a library is not defined. Typically each library will be created directly
in the install tree, since there is little point in generating a file in the build tree and then immediately copying
it to the install tree.

The extras.o file

Package sources files normally get compiled and then added to a library, by defaultlibtarget.a , which is
then linked with the application code. Because of the usual rules for linking with libraries, augmented by the
use of link-time garbage collection, this means that code will only end up in the final executable if there is a
direct or indirect reference to it in the application. Usually this is the desired behaviour: if the application does
not make any use of say kernel message boxes, directly or indirectly, then that code should not end up in the
final executable taking up valuable memory space.

In a few cases it is desirable for package code to end up in the final executable even if there are no direct or in-
direct references. For example, device driver functions are often not called directly. Instead the application will
access the device via the string"/dev/xyzzy" and call the device functions indirectly. This will be impossible
if the functions have been removed at link-time.

Another example involves static C++ objects. It is possible to have a static C++ object, preferably with a suit-
able constructor priority, where all of the interesting work happens as a side effect of running the constructor.
For example a package might include a monitoring thread or a garbage collection thread created from inside
such a constructor. Without a reference by the application to the static object the latter will never get linked in,
and the package will not function as expected.

A third example would be copyright messages. A package vendor may want to insist that all products shipped
using that package include a particular message in memory, even though many users of that package will object
to such a restriction.

To meet requirements such as these the build system provides support for a fileextras.o , which always gets
linked with the application code via the linker script. Because it is an object file rather than a library everything
in the file will be linked in. Theextras.o file is generated at the end of a build from a librarylibextras.a ,
so packages can put functions and variables in suitable source files and add them to that library explicitly:

compile -library=libextras.a xyzzy.c
compile xyzzy_support.c

In this examplexyzzy.o will end up in libextras.a , and hence inextras.o and in the final executable.
xyzzy_support.o will end up in libtarget.a as usual, and is subject to linker garbage collection.

Compilers and Flags

Caution
Some of the details of compiler selection and compiler flags described below are subject
to change in future revisions of the component framework, although every reasonable
attempt will be made to avoid breaking backwards compatibility.

The build system needs to know what compiler to use, what compiler flags should be used for different stages
of the build and so on. Much of this information will vary from target to target, although users should be able
to override this when appropriate. There may also be a need for some packages to modify the compiler flags.
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All platform HAL packages should define a number of options with well-known names, along the following
lines (any existing platform HAL package can be consulted for a complete example):

cdl_component CYGBLD_GLOBAL_OPTIONS {
flavor none
parent CYGPKG_NONE
...

cdl_option CYGBLD_GLOBAL_COMMAND_PREFIX {
flavor data
default_value { "arm-elf" }
...

}
cdl_option CYGBLD_GLOBAL_CFLAGS {

flavor data
default_value "-Wall -g -O2 ..."
...

}

cdl_option CYGBLD_GLOBAL_LDFLAGS {
flavor data
default_value "-g -nostdlib -Wl,--gc-sections ..."
...

}
}

TheCYGBLD_GLOBAL_OPTIONScomponent serves to collect together all global build-related options. It has the
flavor none since disabling all of these options would make it impossible to build anything and hence is not
useful. It is parented immediately below the root of the configuration hierarchy, thus making sure that it is
readily accessible in the graphical configuration tool and, for command line users, in theecos.ecc save file.

Note: Currently the parent property lists a parent of CYGPKG_NONE, rather than an empty string. This could
be unfortunate if there was ever a package with that name. The issue will be addressed in a future release
of the component framework.

The optionCYGBLD_GLOBAL_COMMAND_PREFIXdefines which tools should be used for the current target. Typ-
ically this is determined by the processor on the target hardware. In some cases a given target board may
be able to support several different processors, in which case the default_value expression could select a
different toolchain depending on some other option that is used to control which particular processor.CYG-

BLD_GLOBAL_COMMAND_PREFIXis modifiable rather than calculated, so users can override this when necessary.

Given a command prefix such asarm-elf , all C source files will be compiled witharm-elf-gcc , all C++
sources will be built usingarm-elf-g++ , andarm-elf-ar will be used to generate the library. This is in
accordance with the usual naming conventions for GNU cross-compilers and similar tools. For the purposes of
custom build steps, tokens such as$(CC) will be set toarm-elf-gcc .

The next option,CYGBLD_GLOBAL_CFLAGS, is used to provide the initial value of$(CFLAGS) . Some compiler
flags such as-Wall and-g are likely to be used on all targets. Other flags such as-mcpu=arm7tdmi will be
target-specific. Again this is a modifiable option, so the user can switch from say-O2 to -Os if desired. The
option CYGBLD_GLOBAL_LDFLAGSserves the same purpose for$(LDFLAGS) and linking. It is used primarily
when building test cases or possibly for some custom build steps, since building eCos itself generally involves
building one or more libraries rather than executables.

Some packages may wish to add certain flags to the global set, or possibly remove some flags. This can be
achieved by having appropriately named options in the package, for example:
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cdl_component CYGPKG_KERNEL_OPTIONS {
display "Kernel build options"
flavor none
...

cdl_option CYGPKG_KERNEL_CFLAGS_ADD {
display "Additional compiler flags"
flavor data
default_value { "" }
...

}

cdl_option CYGPKG_KERNEL_CFLAGS_REMOVE {
display "Suppressed compiler flags"
flavor data
default_value { "" }
...

}

cdl_option CYGPKG_KERNEL_LDFLAGS_ADD {
display "Additional linker flags"
flavor data
default_value { "" }
...

}

cdl_option CYGPKG_KERNEL_LDFLAGS_REMOVE {
display "Suppressed linker flags"
flavor data
default_value { "" }
...

}
}

In this example the kernel does not modify the global compiler flags by default, but it is possible for the users
to modify the options if desired. The value of$(CFLAGS) that is used for the compilations and custom build
steps in a given package is determined as follows:

1. Start with the global settings fromCYGBLD_GLOBAL_CFLAGS, for example-g -O2 .

2. Remove any flags specified in the per-packageCFLAGS_REMOVEoption, if any. For example if-O2 should
be removed for this package then$(CFLAGS) would now have a value of just-g .

3. Then concatenate the flags specified by the per-packageCFLAGS_ADDoption, if any. For example if-Os

should be added for the current package then the final value of$(CFLAGS) will be -g -Os .

$(LDFLAGS) is determined in much the same way.

Note: The way compiler flags are handled at present has numerous limitations that need to be addressed
in a future release, although it should suffice for nearly all cases. For the time being custom build steps
and in particular the make_object property can be used to work around the limitations.

Amongst the issues, there is a specific problem with package encapsulation. For example the math library
imposes some stringent requirements on the compiler in order to guarantee exact IEEE behavior, and may
need special flags on a per-architecture basis. One way of handling this is to have CYGPKG_LIBM_CFLAGS_ADD

and CYGPKG_LIBM_CFLAGS_REMOVEdefault_value expressions which depend on the target architecture, but
such expressions may have to updated for each new architecture. An alternative approach would allow
the architectural HAL package to modify the default_value expressions for the math library, but this breaks
encapsulation. A third approach would allow some architectural HAL packages to define one or more
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special options with well-known names, and the math library could check if these options were defined
and adjust the default values appropriately. Other packages with floating point requirements could do the
same. This approach also has scalability issues, in particular how many such categories of options would
be needed? It is not yet clear how best to resolve such issues.

Note: When generating a build tree it would be desirable for the component framework to output details of
the tools and compiler flags in a format that can be re-used for application builds, for example a makefile
fragment. This would make it easier for application developers to use the same set of flags as were used
for building eCos itself, thus avoiding some potential problems with incompatible compiler flags.

Custom Build Steps

Caution
Some of the details of custom build steps as described below are subject to change in
future revisions of the component framework, although every reasonable attempt will be
made to avoid breaking backwards compatibility.

For most packages simply listing one or more source files in a compile property is sufficient. These files will
get built using the appropriate compiler and compiler flags and added to a library, which then gets linked with
application code. A package that can be built in this way is likely to be more portable to different targets
and build environments, since it avoids build-time dependencies. However some packages have special needs,
and the component framework supports custom build steps to allow for these needs. There are two properties
related to this, make and make_object, and both take the following form:

make {
<target_filepath > : <dependency_filepath > ...

<command>
...

}

Although this may look like makefile syntax, and although some build environments will indeed involve gen-
erating makefiles and running make, this is not guaranteed. It is possible for the component framework to be
integrated with some other build system, and custom build steps should be written with that possibility in mind.
Each custom build step involves a target, some number of dependency files, and some number of commands.
If the target is not up to date with respect to one or more of the dependencies then the commands need to be
executed.

a.Only one target can be specified. For a make_object property this target must be an object file. For a make
property it can be any file. In both cases it must refer to a physical file, the use of phony targets is not
supported. The target should not be an absolute path name. If the generated file needs to end up in the
install tree then this can be achieved using a<PREFIX> token, for example:

make {
<PREFIX>/lib/mytarget : ...

...
}

When the build tree is generated and the custom build step is added to the makefile (or whatever build
system is used)<PREFIX> will be replaced with the absolute path to the install tree.
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b. All the dependencies must also refer to physical files, not to phony targets. These files may be in the source
tree. The<PACKAGE> token can be used to indicate this: when the build tree is generated this token will be
replaced with the absolute path to the package’s root directory in the component repository, for example:

make_object {
xyzzy.o : <PACKAGE>/src/xyzzy.c

...

If the component repository was installed in/usr/local/ecos and this custom build step existed in ver-
sion 1_5 of the kernel,<PACKAGE> would be replaced with/usr/local/ecos/packages/kernel/v1_5 .

Alternatively the dependencies may refer to files that are generated during the build. These may be object
files resulting from compile properties or other make_object properties, or they may be other files resulting
from a make property, for example:

compile plugh.c
make_object {

xyzzy.o : plugh.o
...

}

c. No other token or makefile variables may be used in the target or dependency file names. Also conditionals
such asifneq and similar makefile functionality must not be used.

d. Similarly the list of commands must not use any makefile conditionals or similar functionality. A number
of tokens can be used to provide access to target-specific or environmental data. Note that these tokens
look like makefile variables, unlike the<PREFIX> and<PACKAGE> tokens mentioned earlier:

Token Purpose Example value

$(AR) the GNU archiver mips-tx39-elf-ar

$(CC) the GNU compiler sh-elf-gcc

$(CFLAGS) compiler flags -O2 -Wall

$(COMMAND_PREFIX) the triplet prefix mn10300-elf-

$(INCLUDE_PATH> header file search path -I. -Isrc/misc

$(LDFLAGS) linker flags -nostdlib -Wl,-static

$(OBJCOPY) the objcopy utility arm-elf-objcopy

$(PREFIX) location of the install tree /home/fred/ecos-install

$(REPOSITORY) location of the component
repository

/home/fred/ecos/packages

In addition commands in a custom build step may refer to the target and the dependencies using$@, $<, $^

and$* , all of which behave as per GNU make syntax. The commands will execute in a suitable directory
in the build tree.

e.The current directory used during a custom build step is an implementation detail of the build system.
However it can be assumed that each package will have its own directory somewhere in the build tree, to
prevent file name clashes, and that this will be the current directory. In addition any object files generated
as a result of compile properties will be located here as well, which is useful for custom build steps that
depend on a.o file previously generated.

Any temporary files created by a custom build step should be generated in the build tree (in or under the
current directory). Such files should be given a.tmp file extension to ensure that they are deleted during a
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make clean or equivalent operation.

If a package contains multiple custom build steps with the same priority, it is possible that these build
steps will be run concurrently. Therefore these custom build steps must not accidentally use the same file
names for intermediate files.

f. Care has to be taken to make sure that the commands in a custom build step will run on all host
platforms, including Windows NT as well as Linux and other Unix systems. For example, all file
paths should use forward slashes as the directory separator. It can be assumed that Windows users
will have a full set of CygWin tools installed and available on the path. The GNU coding standards
(http://www.gnu.org/prep/standards.html) provide some useful guidelines for writing portable build rules.

g. A custom build step must not make any assumptions concerning the version of another package. This
enforces package encapsulation, preventing one package from accessing the internals of another.

h. No assumptions should be made about the target platform, unless the package is inherently specific to that
platform. Even then it is better to use the various tokens whenever possible, rather than hard-coding in
details such as the compiler. For example, given a custom build step such as:

arm-elf-gcc -c -mcpu=arm7di -o $@ $ <

Even if this build step will only be invoked on ARM targets, it could cause problems. For example the
toolchain may have been installed using a prefix other thanarm-elf . Also, if the user changes the compiler
flags then this would not be reflected in the build step. The correct way to write this rule would be:

$(CC) -c $(CFLAGS) -o $@ $ <

Some commands such as the compiler, the archiver, and objcopy are required sufficiently often to warrant
their own tokens, for example$(CC) and$(OBJCOPY). Other target-specific commands are needed only
rarely and the$(COMMAND_PREFIX)token can be used to construct the appropriate command name, for
example:

$(COMMAND_PREFIX)size $ < > $@

i. Custom build steps should not be used to build host-side executables, even if those executables are needed
to build parts of the target side code. Support for building host-side executables will be added in a future
version of the component framework, although it will not necessarily involve these custom build steps.

By default custom build steps defined in a make_object property have a priority of 100, which means that they
will be executed in the same phase as compilations resulting from a compile property. It is possible to change
the priority using a property option, for example:

make_object -priority 50 {
...

}

Specifying a priority smaller than a 100 means that the custom build step happens before the normal compi-
lations. Priorities between 100 and 200 happen after normal compilations but before the libraries are archived
together. make_object properties should not specify a priority of 200 or later.

Custom build steps defined in a make property have a default priority of 300, and so they will happen after the
libraries have been built. Again this can be changed using a-priority property option.

Startup Code

Linking an application requires the application code, a linker script, the eCos library or libraries, theextras.o

file, and some startup code. Depending on the target hardware and how the application gets booted, this startup
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code may do little more than branching tomain() , or it may have to perform a considerable amount of hardware
initialization. The startup code generally lives in a filevectors.o which is created by a custom build step in
a HAL package. As far as application developers are concered the existence of this file is largely transparent,
since the linker script ensures that the file is part of the final executable.

This startup code is not generally of interest to component writers, only to HAL developers who are referred to
one of the existing HAL packages for specific details. Other packages are not expected to modify the startup in
any way. If a package needs some work performed early on during system initialization, before the application’s
main entry point gets invoked, this can be achieved using a static object with a suitable constructor priority.

Note: It is possible that the extras.o support, in conjunction with appropriate linker script directives, could
be used to eliminate the need for a special startup file. The details are not yet clear.

The Linker Script

Caution
This section is not finished, and the details are subject to change in a future release.
Arguably linker script issues should be documented in the HAL documentation rather
than in this guide.

Generating the linker script is the responsibility of the various HAL packages that are applicable to a given
target. Developers of components other than HAL packages need not be concerned about what is involved.
Developers of new HAL packages should use an existing HAL as a template.

Note: It may be desirable for some packages to have some control over the linker script, for example to add
extra alignment details for a particular section. This can be risky because it can result in subtle portability
problems, and the current component framework has no support for any such operations. The issue may
be addressed in a future release.

Building Test Cases

Caution
The support in the current implementation of the component framework for building and
running test cases is limited, and should be enhanced considerably in a future version.
Compatibility with the existing mechanisms described below will be maintained if possi-
ble, but this cannot be guaranteed.

Whenever possible packages should be shipped with one or more test cases. This allows users to check that all
packages function correctly in their particular configuration and on their target, which may be custom hardware
unavailable to the package developer. The component framework needs to provide a way of building such test
cases. For example, if a makefile system is used then there could be amake tests target to build the test cases,
or possibly amake check target to build and run the test cases and process all the results. Unfortunately there
are various complications.
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Not every test case will be applicable to every configuration. For example if the user has disabled the C
library’s CYGPKG_LIBC_STDIOcomponent then there is no point in building or running any of the test cases for
that component. This implies that test cases need to be associated with configuration options somehow. It is
possible for the test case to use one or more#ifdef statements to check whether or not it is applicable in the
current configuration, and compile to a null program when not applicable. This is inefficient because the test
case will still get built and possibly run, even though it will not provide any useful information.

Many packages involve direct interaction with hardware, for example a serial line or an ethernet interface. In
such cases it is only worthwhile building and running the test if there is suitable software running at the other
end of the serial line or listening on the same ethernet segment, and that software would typically have to run
on the host. Of course the serial line in question may be hooked up to a different piece of hardware which the
application needs to talk to, so disconnecting it and then hooking it up to the host for running some tests may
be undesirable. The decision as to whether or not to build the test depends not just on the eCos configuration
but also on the hardware setup and the availability of suitable host software.

There are different kinds of tests, and it is not always desirable to run all of them. For example a package may
contain a number of stress tests intended to run for long periods of time, possibly days or longer. Such tests
should certainly be distinguished somehow from ordinary test cases so that users will not run them accidentally
and wonder how long they should wait for apass message before giving up. Stress tests may also have depen-
dencies on the hardware configuration and on host software, for example a network stress test may require lots
of ethernet packets.

In the current implementation of the component framework these issues are not yet addressed. Instead there
is only very limited support for building test cases. Any package can define a calculated configuration option
of the formCYGPKG_<package-name >_TESTS, whose value is a list of test cases. The calculated property can
involve an expression so it is possible to adapt to a small number of configuration options, but this quickly
becomes unwieldy. A typical example would be:

cdl_option CYGPKG_UITRON_TESTS {
display "uITRON tests"
flavor data
no_define
calculated { "tests/test1 tests/test2 tests/test3 \

tests/test4 tests/test5 tests/test6 tests/test7 \
tests/test8 tests/test9 tests/testcxx tests/testcx2 \
tests/testcx3 tests/testcx4 tests/testcx5 \
tests/testcx6 tests/testcx7 tests/testcx8 \
tests/testcx9 tests/testintr" }

description "
This option specifies the set of tests for the uITRON compatibility layer."

}

This implies that there is a filetests/test1.c or tests/test1.cxx in the package’s directory. The com-
mands that will be used to build the test case will take the form:

$(CC) -c $(INCLUDE_PATH) $(CFLAGS) -o <build path >/test1.o \
<source path >/tests/test1.c

$(CC) $(LDFLAGS) -o <install path >/tests/test1 <build_path >/test1.o

The variables$(CC) and so on are determined in the same way as for custom build steps. The various paths
and the current directory will depend on the exact build system being used, and are subject to change. As usual
the sources in the component repository are treated as a read-only resources, intermediate files live in the build
tree, and the desired executables should end up in the install tree.

Each test source file must be self-contained. It is not possible at present to build a little per-package library
that can be used by the test cases, or to link together several object files to produce a single test executable. In
some cases it may be possible to#include source code from a shared file in order to avoid unnecessary code
replication. There is no support for manipulating compiler or linker flags for individual test cases: the flags that
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will be used for all files are$(CFLAGS) and$(LDFLAGS) , as per custom build steps. Note that it is possible for
a package to define options of the formCYGPKG_<PACKAGE-NAME>_LDFLAGS_ADDandCYGPKG_<PACKAGE-

NAME>_LDFLAGS_REMOVE. These will affect test cases, but in the absence of custom build steps they will have
no other effect on the build.
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Chapter 5. CDL Language Specification
This chapter contains reference information for the main CDL commandscdl_option , cdl_component ,
cdl_package andcdl_interface , followed by the various properties such as active_if and compile in al-
phabetical order.

cdl_option

Name
Command cdl_option — Define a single configuration option

Synopsis

cdl_option <name> {
...

}

Description

The option is the basic unit of configurability. Generally each option corresponds to a single user choice.
Typically there is a certain amount of information associated with an option to assist the user in manipulating
that option, for example a textual description. There will also be some limits on the possible values that the
user can choose, so an option may be a simple yes-or-no choice or it may be something more complicated such
as an array size or a device name. Options may have associated constraints, so if that option is enabled then
certain conditions have to satisfied elsewhere in the configuration. Options usually have direct consequences
such as preprocessor#define symbols in a configuration header file.

cdl_option is implemented as a Tcl command that takes two arguments, a name and a body. The name must
be a valid C preprocessor identifier: a sequence of upper or lower case letters, digits or underscores, starting
with a non-digit character; identifiers beginning with an underscore should normally be avoided because they
may clash with system packages or with identifiers reserved for use by the compiler. Within a single con-
figuration, names must be unique. If a configuration contained two packages which defined the same entity
CYGIMP_SOME_OPTION, any references to that entity in a requires property or any other expression would be
ambiguous. It is possible for a given name to be used by two different packages if those packages should
never be loaded into a single configuration. For example, architectural HAL packages are allowed to re-use
names because a single configuration cannot target two different architectures. For a recommended naming
convention seethe Section calledPackage Contents and Layoutin Chapter 2.

The second argument tocdl_option is a body of properties, typically surrounded by braces so that the Tcl
interpreter treats it as a single argument. This body will be processed by a recursive invocation of the Tcl in-
terpreter, extended with additional commands for the various properties that are allowed inside acdl_option .
The valid properties are:

active_if

Allow additional control over the active state of this option.

calculated

The option’s value is not directly user-modifiable, it is calculated using a suitable CDL expression.
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compile

List the source files that should be built if this option is active and enabled.

default_value

Provide a default value for this option using a CDL expression.

define

Specify additional#define symbols that should go into the owning package’s configuration header file.

define_format

Control how the option’s value will appear in the configuration header file.

define_proc

Use a fragment of Tcl code to output additional data to configuration header files.

description

Provide a textual description for this option.

display

Provide a short string describing this option.

doc

The location of on-line documentation for this option.

flavor

Specify the nature of this option.

if_define

Output a common preprocessor construct to a configuration header file.

implements

Enabling this option provides one instance of a more general interface.

legal_values

Impose constraints on the possible values for this option.

make

An additional custom build step associated with this option, resulting in a target that should not go directly
into a library.

make_object

An additional custom build step associated with this option, resulting in an object file that should go into
a library.

no_define

Suppress the normal generation of a preprocessor#define symbol in a configuration header file.

parent

Control the location of this option in the configuration hierarchy.
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requires

List constraints that the configuration should satisfy if this option is active and enabled.

Example

cdl_option CYGDBG_INFRA_DEBUG_PRECONDITIONS {
display "Preconditions"
default_value 1
description "

This option allows individual control of preconditions.
A precondition is one type of assert, which it is
useful to control separately from more general asserts.
The function is CYG_PRECONDITION(condition,msg)."

}

See Also

Commandcdl_component , commandcdl_package , commandcdl_interface .
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Name
Command cdl_component — Define a component, a collection of configuration options

Synopsis

cdl_component <name> {
...

}

Description

A component is a configuration option that can contain additional options and sub-components. The body of
a cdl_component can contain the same properties as that of acdl_option . There is an additional property,
script which allows configuration data to be split into multiple files. It is also possible for a component body
to includecdl_component , cdl_option andcdl_interface entities that should go below this component in
the configuration hierarchy.

cdl_component is implemented as a Tcl command that takes two arguments, a name and a body. The name
must be a valid C preprocessor identifier: a sequence of upper or lower case letters, digits or underscores,
starting with a non-digit character; identifiers beginning with an underscore should normally be avoided be-
cause they may clash with system packages or with identifiers reserved for use by the compiler. Within a single
configuration, names must be unique. If a configuration contained two packages which defined the same entity
CYGIMP_SOME_OPTION, any references to that entity in a requires property or any other expression would be
ambiguous. It is possible for a given name to be used by two different packages if those packages should never
be loaded into a single configuration. For example, architectural HAL packages are allowed to re-use certain
names because a single configuration cannot target two different architectures. For a recommended naming
convention seethe Section calledPackage Contents and Layoutin Chapter 2.

The second argument tocdl_component is a body of properties and other commands, typically surrounded
by braces so that the Tcl interpreter treats it as a single argument. This body will be processed by a recursive
invocation of the Tcl interpreter, extended with additional commands for the various properties that are allowed
inside acdl_component . The valid commands are:

active_if

Allow additional control over the active state of this component.

calculated

The component’s value is not directly user-modifiable, it is calculated using a suitable CDL expression.

cdl_component

Define a sub-component.

cdl_interface

Define an interface which should appear immediately below this component in the configuration hierar-
chy.
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cdl_option

Define a configuration option which should appear immediately below this component in the configuration
hierarchy.

compile

List the source files that should be built if this component is active and enabled.

default_value

Provide a default value for this component using a CDL expression.

define

Specify additional#define symbols that should go into the owning package’s configuration header file.

define_format

Control how the component’s value will appear in the configuration header file.

define_proc

Use a fragment of Tcl code to output additional data to configuration header files.

description

Provide a textual description for this component.

display

Provide a short string describing this component.

doc

The location of on-line documentation for this component.

flavor

Specify the nature of this component.

if_define

Output a common preprocessor construct to a configuration header file.

implements

Enabling this component provides one instance of a more general interface.

legal_values

Impose constraints on the possible values for this component.

make

An additional custom build step associated with this component, resulting in a target that should not go
directly into a library.

make_object

An additional custom build step associated with this component, resulting in an object file that should go
into a library.
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no_define

Suppress the normal generation of a preprocessor#define symbol in a configuration header file.

parent

Control the location of this component in the configuration hierarchy.

requires

List constraints that the configuration should satisfy if this component is active and enabled.

script

Include additional configuration information from another CDL script

Example

cdl_component CYGDBG_USE_ASSERTS {
display "Use asserts"
default_value 1
description "

If this component is enabled, assertions in the code are
tested at run-time. Assert functions (CYG_ASSERT()) are
defined in ’include/cyg/infra/cyg_ass.h’ within the ’install’
tree. If the component is disabled, these result in no
additional object code and no checking of the asserted
conditions."

script assert.cdl
}

See Also

Commandcdl_option , commandcdl_package , commandcdl_interface .
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Name
Command cdl_package — Define a package, a component that can be distributed

Synopsis

cdl_package <name> {
...

}

Description

A package is a unit of distribution. It is also a configuration option in that users can choose whether or not a
particular package is loaded into the configuration, and which version of that package should be loaded. It is
also a component in that it can contain additional components and options in a hierarchy.

The top-level CDL script for a package should begin with acdl_package command. This can contain most
of the properties that can be used in acdl_option command, and a number of additional ones which apply
to a package as a whole. It is also possible to includecdl_component , cdl_interface and cdl_option

commands in the body of a package. However all configuration entities that occur at the top level of the
script containing thecdl_package command are automatically placed below that package in the configuration
hierarchy, so putting them inside the body has no effect.

The following properties cannot be used in the body of acdl_package command:

flavor

Packages always have the flavorbooldata .

default_value

The value of a package is its version number. This is specified at the time the package is loaded into the
configuration, and cannot be calculated afterwards. Typically the most recent version of the package will
be loaded.

legal_values

The legal values list for a given package is determined by which versions of that package are installed in
the component repository, and cannot be further constrained in the CDL scripts.

calculated

The value of a package is always selected at the time that it is loaded into the configuration, and cannot
be re-calculated afterwards.

script

This would be redundant since the CDL script containing thecdl_package command acts as that pack-
age’s script.

cdl_package is implemented as a Tcl command that takes two arguments, a name and a body. The name must
be a valid C preprocessor identifier: a sequence of upper or lower case letters, digits or underscores, starting
with a non-digit character; identifiers beginning with an underscore should normally be avoided because they
may clash with system packages or with identifiers reserved for use by the compiler. Packages should always
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have unique names within a given component repository. For a recommended naming convention seethe
Section calledPackage Contents and Layoutin Chapter 2.

The second argument tocdl_package is a body of properties and other commands, typically surrounded
by braces so that the Tcl interpreter treats it as a single argument. This body will be processed by a recursive
invocation of the Tcl interpreter, extended with additional commands for the various properties that are allowed
inside acdl_package . The valid commands are:

active_if

Allow additional control over the active state of this package.

cdl_component

Define a component which should appear immediately below this package in the configuration hierarchy.

cdl_interface

Define an interface which should appear immediately below this package in the configuration hierarchy.

cdl_option

Define an option which should appear immediately below this package in the configuration hierarchy.

compile

List the source files that should be built for this package.

define

Specify additional#define symbols that should go into the package’s configuration header file.

define_format

Control how the package’s value will appear in the global configuration header filepkgconf/system.h

define_header

Specify the configuration header file that will be generated for this package.

define_proc

Use a fragment of Tcl code to output additional data to configuration header files.

description

Provide a textual description for this component.

display

Provide a short string describing this component.

doc

The location of on-line documentation for this component.

hardware

This package is tied to specific hardware.

if_define

Output a common preprocessor construct to a configuration header file.

88



cdl_package

implements

Enabling this component provides one instance of a more general interface.

include_dir

Specify the desired location of this package’s exported header files in the install tree.

include_files

List the header files that are exported by this package.

library

Specify which library should contain the object files generated by building this package.

make

An additional custom build step associated with this component, resulting in a target that should not go
directly into a library.

make_object

An additional custom build step associated with this component, resulting in an object file that should go
into a library.

no_define

Suppress the normal generation of the package’s#define in the global configuration header filepkg-

conf/system.h .

parent

Control the location of this package in the configuration hierarchy.

requires

List constraints that the configuration should satisfy if this package is active.

Example

cdl_package CYGPKG_INFRA {
display "Infrastructure"
include_dir cyg/infra
description "

Common types and useful macros.
Tracing and assertion facilities.
Package startup options."

compile startup.cxx prestart.cxx pkgstart.cxx userstart.cxx \
dummyxxmain.cxx null.cxx simple.cxx fancy.cxx buffer.cxx \
diag.cxx tcdiag.cxx memcpy.c memset.c delete.cxx

}

See Also

Commandcdl_option , commandcdl_component , commandcdl_interface .
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Name
Command cdl_interface — Define an interface, functionality that can be provided by a number of
different implementations.

Synopsis

cdl_interface <name> {
...

}

Description

An interface is a special type of calculated configuration option. It provides an abstraction mechanism that is
often useful in CDL expressions. As an example, suppose that some package relies on the presence of code that
implements the standard kernel scheduling interface. However the requirement is no more stringent than this,
so the constraint can be satisfied by the mlqueue scheduler, the bitmap scheduler, or any additional schedulers
that may get implemented in future. A first attempt at expressing the dependency might be:

requires CYGSEM_KERNEL_SCHED_MLQUEUE || CYGSEM_KERNEL_SCHED_BITMAP

This constraint is limited, it may need to be changed if a new scheduler were to be added to the system.
Interfaces provide a way of expressing more general relationships:

requires CYGINT_KERNEL_SCHEDULER

The interfaceCYGINT_KERNEL_SCHEDULERis implementedby both the mlqueue and bitmap schedulers, and
may be implemented by future schedulers as well. The value of an interface is the number of implementors
that are active and enabled, so in a typical configuration only one scheduler will be in use and the value of
the interface will be1. If all schedulers are disabled then the interface will have a value0 and the requires
constraint will not be satisfied.

Some component writers may prefer to use the first requires constraint on the grounds that the code will only
have been tested with the mlqueue and bitmap schedulers and cannot be guaranteed to work with any new
schedulers. Other component writers may take a more optimistic view and assume that their code will work
with any scheduler until proven otherwise.

Interfaces must be defined in CDL scripts, just like options, components and packages. This involves the
commandcdl_interface which takes two arguments, a name and a body. The name must be a valid C pre-
processor identifier: a sequence of upper or lower case letters, digits or underscores, starting with a non-digit
character; identifiers beginning with an underscore should normally be avoided because they may clash with
system packages or with identifiers reserved for use by the compiler. Within a single configuration, names must
be unique. If a configuration contained two packages which defined the same entityCYGIMP_SOME_OPTION, any
references to that entity in a requires property or any other expression would be ambiguous. It is possible for
a given name to be used by two different packages if those packages should never be loaded into a single
configuration. For example, architectural HAL packages are allowed to re-use names because a single configu-
ration cannot target two different architectures. For a recommended naming convention seethe Section called
Package Contents and Layoutin Chapter 2.

The second argument tocdl_interface is a body of properties, typically surrounded by braces so that the Tcl
interpreter treats it as a single argument. This body will be processed by a recursive invocation of the Tcl inter-
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preter, extended with additional commands for the various properties that are allowed inside acdl_interface .
The valid properties are a subset of those for acdl_option .

active_if

Allow additional control over the active state of this interface.

compile

List the source files that should be built if this interface is active.

define

Specify additional#define symbols that should go into the owning package’s configuration header file.

define_format

Control how the interface’s value will appear in the configuration header file.

define_proc

Use a fragment of Tcl code to output additional data to configuration header files.

description

Provide a textual description for this interface.

display

Provide a short string describing this interface.

doc

The location of on-line documentation for this interface.

flavor

Interfaces have thedata flavor by default, but they can also be given thebool or booldata flavor when
necessary. Abool interface is disabled if there are no active and enabled implementors, otherwise it is
enabled. Abooldata interface is also disabled if there are no active and enabled implementors, otherwise
it is enabled and the data is a number corresponding to the number of these implementors.

if_define

Output a common preprocessor construct to a configuration header file.

implements

If this interface is active it provides one instance of a more general interface.

legal_values

Interfaces always have a small numerical value. The legal_values can be used to apply additional con-
straints such as an upper limit.

make

An additional custom build step associated with this option, resulting in a target that should not go directly
into a library.
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make_object

An additional custom build step associated with this option, resulting in an object file that should go into
a library.

no_define

Suppress the normal generation of a preprocessor#define symbol in a configuration header file.

parent

Control the location of this option in the configuration hierarchy.

requires

List constraints that the configuration should satisfy if this option is active and enabled.

A number of properties are not applicable to interfaces:

calculated

Interfaces are always calculated, based on the number of active and enabled entities that implement the
interface.

default_value

Interface values are calculated so a default_value property would be meaningless.

Interfaces are not containers, so they cannot hold other entities such as options or components.

A commonly used constraint on interface values takes the form:

requires CYGINT_KERNEL_SCHEDULER == 1

This constraint specifies that there can be only one scheduler in the system. In some circumstances it is pos-
sible for the configuration tools to detect this pattern and act accordingly, so for example enabling the bitmap
scheduler would automatically disable the mlqueue scheduler.

Example

cdl_interface CYGINT_KERNEL_SCHEDULER {
display "Number of schedulers in this configuration"
requires 1 == CYGINT_KERNEL_SCHEDULER

}

See Also

Propertyimplements, commandcdl_option . commandcdl_component , commandcdl_package .

93



cdl_interface

94



active_if

Name
Property active_if — Allow additional control over the active state of an option or other CDL entity.

Synopsis

cdl_option <name> {
active_if <condition >

...
}

Description

Configuration options or other entities may be either active or inactive. Typically this is controlled by the
option’s location in the overall hierarchy. Consider the optionCYGDBG_INFRA_DEBUG_PRECONDITIONS, which
exists below the componentCYGDBG_USE_ASSERT. If the whole component is disabled then the options it
contains are inactive: there is no point in enabling preconditions unless there is generic assertion support; any
requires constraints associated with preconditions are irrelevant; any compile property or other build-related
property is ignored.

In some cases the hierarchy does not provide sufficient control over whether or not a particular option should be
active. For example, the math library could have support for floating point exceptions which is only worthwhile
if the hardware implements appropriate functionality, as specified by the architectural HAL. The relevant math
library configuration options should remain below theCYGPKG_LIBMpackage in the overall hierarchy, but
should be inactive unless there is appropriate hardware support. In cases like this an active_if property is
appropriate.

Another common use of active_if properties is to avoid excessive nesting in the configuration hierarchy. If
some option B is only relevant if option A is enabled, it is possible to turn A into a component that contains
B. However adding another level to the hierarchy for a component which will contain just one entry may be
considered excessive. In such cases it is possible for B to have an active_if dependency on A.

active_if takes a goal expression as argument. For details of goal expression syntax seethe Section calledGoal
Expressionsin Chapter 3. In most cases the goal expression will be very simple, often involving just one other
option, but more complicated expressions can be used when appropriate. It is also possible to have multiple
active_if conditions in a single option, in which case all of the conditions have to be satisfied if the option is to
be active.

The active_if and requires properties have certain similarities, but they serve a different purpose. Suppose there
are two options A and B, and option B relies on functionality provided by A. This could be expressed as either
active_if A or asrequires A . The points to note are:

• If active_if A is used and A is disabled or inactive, then graphical tools will generally prevent any attempt
at modifying B. For example the text for B could be grayed out, and the associated checkbutton (if B is
a boolean option) would be disabled. If the user needs the functionality provided by option B then it is
necessary to go to option A first and manipulate it appropriately.

• If requires A is used and A is disabled or inactive, graphical tools will still allow B to be manipulated and
enabled. This would result in a new conflict which may get resolved automatically or which may need user
intervention.
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• If there are hardware dependencies then an active_if condition is usually the preferred approach. There is no
point in allowing the user to manipulate a configuration option if the corresponding functionality cannot pos-
sibly work on the currently-selected hardware. Much the same argument applies to coarse-grained dependen-
cies, for example if an option depends on the presence of a TCP/IP stack then anactive_if CYGPKG_NET

condition is appropriate: it may be possible to satisfy the condition, but it requires the fairly drastic step of
loading another package; further more, if the user wanted a TCP/IP stack in the configuration then it would
probably have been loaded already.

• If option B exists to provide additional debugging information about the functionality provided by A then
again an active_if constraint is appropriate. There is no point in letting users enable extra debugging facilities
for a feature that is not actually present.

• The configuration system’s inference engine will cope equally well with active_if and requires properties.
Suppose there is a conflict because some third option depends on B. If B isactive_if A then the inference
engine will attempt to make A active and enabled, and then to enable B if necessary. If Brequires A then
the inference engine will attempt to enable B and resolve the resulting conflict by causing A to be both active
and enabled. Although the inference occurs in a different order, in most cases the effect will be the same.

Example

# Do not provide extra semaphore debugging if there are no semaphores
cdl_option CYGDBG_KERNEL_INSTRUMENT_BINSEM {

active_if CYGPKG_KERNEL_SYNCH
...

}

# Avoid another level in the configuration hierarchy
cdl_option CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INHERITANCE_SIMPLE_RELAY {

active_if CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INHERITANCE_SIMPLE
...

}

# Functionality that is only relevant if another package is loaded
cdl_option CYGSEM_START_UITRON_COMPATIBILITY {

active_if CYGPKG_UITRON
...

}

# Check that the hardware or HAL provide the appropriate functionality
cdl_option CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT {

active_if CYGINT_HAL_DEBUG_GDB_STUBS_BREAK
...

}

See Also

Propertyrequires.
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Name
Property calculated — Used if the current option’s value is not user-modifiable, but is calculated
using a suitable CDL expression.

Synopsis

cdl_option <name> {
calculated <expression >

...
}

Description

In some cases it is useful to have a configuration option whose value cannot be modified directly by the
user. This can be achieved using a calculated, which takes a CDL expression as argument (seethe Section
calledOrdinary Expressionsin Chapter 3for a description of expression syntax). The configuration system
evaluates the expression when the current package is loaded and whenever there is a change to any other
option referenced in the expression. The result depends on the option’s flavor:

flavor none

Options with this flavor have no value, so the calculated property is not applicable.

flavor bool

If the expression evaluates to a non-zero result the option is enabled, otherwise it is disabled.

flavor booldata

If the result of evaluating the expression is zero then the option is disabled, otherwise the option is enabled
and its value is the result.

flavor data

The value of the option is the result of evaluating the expression.

There are a number of valid uses for calculated options, and there are also many cases where some other CDL
facility would be more appropriate. Valid uses of calculated options include the following:

• On some target hardware a particular feature may be user-configurable, while on other targets it is fixed.
For example some processors can operate in either big-endian or little-endian mode, while other processors
do not provide any choice. It is possible to have an optionCYGARC_BIGENDIANwhich is calculated in some
architectural HAL packages but user-modifiable in others.

• Calculated options can provide an alternative way for one package to affect the behavior of another one.
Suppose a package may provide two possible implementations, a preferred one involving self-modifying
code and a slower alternative. If the system involves a ROM bootstrap then the slower alternative must be
used, but it would be inappropriate to modify the startup option in every HAL to impose constraints on this
package. Instead it is possible to have a calculated option whose value is{ CYG_HAL_STARTUP == "ROM" },
and which has appropriate consequences. Arguably this is a spurious example, and it should be a user choice
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whether or not to use self-modifying code with a default_value based onCYG_HAL_STARTUP, but that is for
the component writer to decide.

• Sometimes it should be possible to perform a particular test at compile-time, for example by using a C
preprocessor#if construct. However the preprocessor has only limited functionality, for example it cannot
perform string comparisons. CDL expressions are more powerful.

• Occasionally a particular sub-expression may occur multiple times in a CDL script. If the sub-expression
is sufficiently complex then it may be worthwhile to have a calculated option whose value is the sub-
expression, and then reference that calculated option in the appropriate places.

Alternatives to using calculated options include the following:

• CDL interfacesare a form of calculated option intended as an abstraction mechanism. An interface can be
used to express the concept ofany scheduler, as opposed to a specific one such as the bitmap scheduler.

• If a calculated option would serve only to add additional information to a configuration header file, it may
be possible to achieve the same effect using adefine_procproperty or one of the other properties related to
header file generation.

Tip: If the first entry in a calculated expression is a negative number, for example calculated -1 then this
can be misinterpreted as an option instead of as part of the expression. Currently the calculated property
does not take any options, but this may change in future. Option processing halts at the sequence -- , so
the desired value can be expressed safely using calculated -- -1

Warning
Some of the CDL scripts in current eCos releases make excessive use of calculated op-
tions. This is partly because the recommended alternatives were not always available at
the time the scripts were written. It is also partly because there is still some missing func-
tionality, for example define_proc properties cannot yet access the configuration data so
it may be necessary to use calculated properties to access the data and perform the
desired manipulation via a CDL expression. New scripts should use calculated options
only in accordance with the guidelines.

Note: For options with the booldata flavor the current CDL syntax does not allow the enabled flag and the
value to be calculated separately. Functionality to permit this may be added in a future release.

Note: It has been suggested that having options which are not user-modifiable is potentially confusing,
and that a top-level cdl_constant command should be added to the language instead of or in addition to
the calculated property. Such a change is under consideration. However because the value of a calculated
option can depend on other options, it is not necessarily constant.

Example

# A constant on some target hardware, perhaps user-modifiable on other
# targets.
cdl_option CYGNUM_HAL_RTC_PERIOD {

display "Real-time clock period"
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flavor data
calculated 12500

}

See Also

Propertiesdefault_value, flavorandlegal_values,

99



calculated

100



compile

Name
Property compile — List the source files that should be built if this option is active and enabled.

Synopsis

cdl_option <name> {
compile [-library=libxxx.a] <list of files >

...
}

Description

The compile property allows component developers to specify source files which should be compiled and
added to one of the target libraries. Usually each source file will end up the librarylibtarget.a . It is possible
for component writers to specify an alternative library for an entire package using thelibrary property. Alter-
natively the desired library can be specified on the compile line itself. For example, to add a particular source
file to thelibextras.a library the following could be used:

cdl_package CYGPKG_IO_SERIAL {
...
compile -library=libextras.a common/tty.c

}

Details of the build process including such issues as compiler flags and the order in which things happen can
be found inChapter 4.

compile properties can occur in any ofcdl_option , cdl_component , cdl_package or cdl_interface . A
compile property has effect if and only if the entity that contains it is active and enabled. Typically the body
of a cdl_package will define any source files that need to be built irrespective of individual options, and each
cdl_component , cdl_option , andcdl_interface will define source files that are more specific. A single
compile property can list any number of source files, all destined for the same library. Acdl_option or other
entity can contain multiple compile properties, each of which can specify a different library. It is possible for
a given source file to be specified in compile properties for several different options, in which case the source
file will get built if any of these options are active and enabled.

If the package follows thedirectory layout conventionsthen the configuration tools will search for the specified
source files first in thesrc subdirectory of the package, then relative to the package directory itself.

Note: A shortcoming of the current specification of compile properties is that there is no easy way to
specify source files that should be built unless an option is enabled. It would sometimes be useful to be
able to say: “if option A is enabled then compile file x.c , otherwise compile file y.c . There are two simple
ways of achieving this:

• Always compile y.c , typically by listing it in the body of the cdl_package , but use #ifndef A to produce
an empty object file if option A is not enabled. This has the big disadvantage that the file always gets
compiled and hence for some configurations builds will take longer than necessary.

• Use a calculated option whose value is !A , and have a compile y.c property in its body. This has the
big disadvantage of adding another calculated option to the configuration.
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It is likely that this will be resolved in the future, possibly by using some sort of expression as the argument
to a compile property.

Note: Currently it is not possible to control the priority of a compile property, in other words the order in
which a file gets compiled relative to other build steps. This functionality might prove useful for complicated
packages and should be added.

Example

cdl_package CYGPKG_INFRA {
display "Infrastructure"
include_dir cyg/infra
description "

Common types and useful macros.
Tracing and assertion facilities.
Package startup options."

compile startup.cxx prestart.cxx pkgstart.cxx userstart.cxx \
dummyxxmain.cxx memcpy.c memset.c delete.cxx \
diag.cxx tcdiag.cxx

}

See Also

Propertiesmake, make_objectandlibrary.
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Name
Property default_value — Provide a default value for this option using a CDL expression.

Synopsis

cdl_option <name> {
default_value <expression >

...
}

Description

The default_value property allows the initial value of a configuration option to depend on other configuration
options. The arguments to the property should be a CDL expression, seethe Section calledOrdinary Expres-
sionsin Chapter 3for the syntactic details. In many cases a simple constant value will suffice, for example:

cdl_component CYGPKG_KERNEL_EXCEPTIONS {
...
default_value 1

cdl_option CYGSEM_KERNEL_EXCEPTIONS_DECODE {
...
default_value 0

}
}

However it is also possible for an option’s default value to depend on other options. For example the common
HAL package provides some support functions that are needed by the eCos kernel, but are unlikely to be useful
if the kernel is not being used. This relationship can be expressed using:

cdl_option CYGFUN_HAL_COMMON_KERNEL_SUPPORT {
...
default_value CYGPKG_KERNEL

}

If the kernel is loaded then this HAL option is automatically enabled, although the user can still disable it
explicitly should this prove necessary. If the kernel is not loaded then the option is disabled, although it can still
be enabled by the user if desired. default_value expressions can be more complicated than this if appropriate,
and provide a very powerful facility for component writers who want their code to “just do the right thing” in
a wide variety of configurations.

The CDL configuration system evaluates the default_value expression when the current package is loaded and
whenever there is a change to any other option referenced in the expression. The result depends on the option’s
flavor:

flavor none

Options with this flavor have no value, so the default_value property is not applicable.

flavor bool

If the expression evaluates to a non-zero result the option is enabled by default, otherwise it is disabled.
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flavor booldata

If the result of evaluating the expression is zero then the option is disabled, otherwise the option is enabled
and its value is the result.

flavor data

The default value of the option is the result of evaluating the expression.

A cdl_option or other entity can have at most one default_value property, and it is illegal to have both a
calculated and a default_value property in one body. If an option does not have either a default_value or a
calculated property and it does not have the flavornone then the configuration tools will assume a default
value expression of0.

On occasion it is useful to have a configuration optionA which has both a requires constraint on some other
optionB and a default_value expression ofB. If option B is not enabled thenA will also be disabled by default
and no conflict arises. IfB is enabled thenA also becomes enabled and again no conflict arises. If a user attempts
to enableB but notA then there will be a conflict. Users should be able to deduce that the two options are closely
interlinked and should not be manipulated independently except in very unusual circumstances.

Tip: If the first entry in a default_value expression is a negative number, for example default_value -

1 then this can be misinterpreted as an option instead of as part of the expression. Currently the de-
fault_value property does not take any options, but this may change in future. Option processing halts at
the sequence -- , so the desired value can be expressed safely using default_value -- -1

Note: In many cases it would be useful to calculate default values using some global preferences, for
example:

cdl_option CYGIMP_LIBC_STRING_PREFER_SMALL_TO_FAST {
...
default_value CYGGLO_CODESIZE > CYGGLO_SPEED

}

Such global preference options do not yet exist, but are likely to be added in a future version.

Note: For options with the booldata flavor the current syntax does not allow the default values of the
enabled flag and the value to be controlled separately. Functionality to permit this may be added in a future
release.

Example

cdl_option CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT {
display "Include GDB multi-threading debug support"
requires CYGDBG_KERNEL_DEBUG_GDB_THREAD_SUPPORT
default_value CYGDBG_KERNEL_DEBUG_GDB_THREAD_SUPPORT
description "

This option enables some extra HAL code which is needed
to support multi-threaded source level debugging."

}
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See Also

Propertiescalculated, flavorandlegal_values.
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Name
Property define — Specify additional#define symbols that should go into the owning package’s
configuration header file.

Synopsis

cdl_option <name> {
define [-file= <filename >] [-format= <format >] <symbol >

...
}

Description

Normally the configuration system generates a single#define for each option that is active and enabled, with
the defined symbol being the name of the option. These#define’s go to the package’s own configuration
header file, for examplepkgconf/kernel.h for kernel configuration options. For the majority of options this
is sufficient. Sometimes it is useful to have more control over which#define’s get generated.

The define property can be used to generate an addition#define if the option is both active and enabled, for
example:

cdl_option CYGNUM_LIBC_STDIO_FOPEN_MAX {
...
define FOPEN_MAX

}

If this option is given the value 40 then the following#define’s will be generated in the configuration header
pkgconf/libc.h :

#define CYGNUM_LIBC_STDIO_FOPEN_MAX 40
#define FOPEN_MAX 40

The default#define can be suppressed if desired using the no_define property. This is useful if the symbol
should only be defined inpkgconf/system.h and not in the package’s own configuration header file. The
value that will be used for this#define is the same as for the default one, and depends on the option’s flavor
as follows:

flavor none

Options with this flavor are always enabled and have no value, so the constant1 will be used.

flavor bool

If the option is disabled then no#define will be generated. Otherwise the constant1 will be used.

flavor booldata

If the option is disabled then no#define will be generated. Otherwise the option’s current value will be
used.
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flavor data

The option’s current value will be used.

For active options with thedata flavor, and for active and enabled options with thebooldata flavor, either one
or two #define’s will be generated. These take the following forms:

#define <symbol > <value >

#define <symbol >_<value >

For the first#define it is possible to control the format used for the value using a-format= <format > option.
For example, the following can be used to output some configuration data as a C string:

cdl_option <name> {
...
define -format="\\\"%s\\\"" <symbol >

}

The implementation of this facility involves concatenating the Tcl commandformat , the format string, and the
string representation of the option’s value, and evaluating this in a Tcl interpreter. Therefore the format string
will be processed twice by a Tcl parser, and appropriate care has to be taken with quoting.

The second#define will be generated only if is a valid C preprocessor macro symbol. By default the symbols
generated by define properties will end up in the package’s own configuration header file. The-file option
can be used to specify an alternative destination. At the time of writing the only valid alternative definition is
-file=system.h , which will send the output to the global configuration header filepkgconf/system.h .

Caution
Care has to be taken with the -format option. Because the Tcl interpreter’s format com-
mand is used, this property is subject to any problems with the implementation of this in
the Tcl library. Generally there should be no problems with string data or with integers
up to 32 bits, but there may well be problems if 64-bit data is involved. This issue may
be addressed in a future release.

Example

cdl_component CYG_HAL_STARTUP {
display "Startup type"
flavor data
legal_values {"RAM" "ROM" }
default_value {"RAM"}
no_define
define -file=system.h CYG_HAL_STARTUP
...

}

See Also

Propertiesdefine_format, define_header, define_proc, if_defineandno_define.
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Name
Property define_format — Control how an option’s value will appear in the configuration header
file.

Synopsis

cdl_option <name> {
define_format <format string >

...
}

Description

For active options with thedata flavor, and for active and enabled options with thebooldata flavor, the
configuration tools will normally generate two#define’s in the package’s configuration header file. These
take the following forms:

#define <name> <value >

#define <name>_<value >

The define_format property can be used to control exactly what appears as the value for the first of these
#define’s . For example, the following can be used to output some configuration data as a C string:

cdl_option <name> {
...
define -format="\\\"%s\\\"" <symbol >

}

The implementation of define_format involves concatenating the Tcl commandformat , the format string, and
the string representation of the option’s value, and evaluating this in a Tcl interpreter. Therefore the format
string will be processed twice by a Tcl parser, and appropriate care has to be taken with quoting.

The second#define will be generated only if is a valid C preprocessor macro symbol, and is not affected by
the define_format property. Also, the property is only relevant for options with thedata or booldata flavor,
and cannot be used in conjunction with the no_define property since it makes no sense to specify the format if
no #define is generated.

Caution
Because the Tcl interpreter’s format command is used, this property is subject to any
problems with the implementation of this in the Tcl library. Generally there should be no
problems with string data or with integers up to 32 bits, but there may well be problems
if 64-bit data is involved. This issue may be addressed in a future release.

Example

cdl_option CYGNUM_UITRON_VER_ID {
display "OS identification"
flavor data
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legal_values 0 to 0xFFFF
default_value 0
define_format "0x%04x"
description "

This value is returned in the ’id’
field of the T_VER structure in
response to a get_ver() system call."

}

See Also

Propertiesdefine, define_header, define_proc, if_defineandno_define.
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Name
Property define_header — Specify the configuration header file that will be generated for a given
package.

Synopsis

cdl_package <name> {
define_header <file name >

...
}

Description

When the configuration tools generate a build tree, one of the steps is to output each package’s configuration
data to a header file. For example the kernel’s configuration data gets output topkgconf/kernel.h . This
allows each package’s source code to#include the appropriate header file and adapt to the choices made by
the user.

By default the configuration tools will synthesize a file name from the package name. This involves removing
any prefix such asCYGPKG_, up to and including the first underscore, and then converting the remainder of
the name to lower case. In some cases it may be desirable to use a different header file, for example an
existing package may have been ported to eCos and the source code may already#include a particular file for
configuration data. In such cases a define_header property can be used to specify an alternative filename.

The define_header property can only be used in the body of acdl_package command. It applies to a package
as a whole and cannot be used at a finer grain. The name specified in a define_header property will always be
interpreted as relative to theinclude/pkgconf sub-directory of the install tree.

Note: For hardware-specific packages such as device drivers and HAL packages, the current scheme of
generating a configuration header file name based on the package name may be abandoned. Instead all
hardware packages would send their configuration data to a single header file, pkgconf/hardware.h . This
would make it easier for code to obtain details of the current hardware, but obviously there are compati-
bility issues. For now it is recommended that all hardware packages specify their configuration header file
explicitly.

Example

cdl_package CYGPKG_HAL_ARM {
display "ARM architecture"
parent CYGPKG_HAL
hardware
include_dir cyg/hal
define_header hal_arm.h
...

}
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See Also

Propertiesdefine, define_format, define_proc, if_define, no_defineandhardware,
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Name
Property define_proc — Use a fragment of Tcl code to output additional data to configuration header
files.

Synopsis

cdl_option <name> {
define_proc <Tcl script >

...
}

Description

For most configuration options it is sufficient to have an entry in the configuration header file of the form:

#define <name> <value >

In some cases it is desirable to perform some more complicated processing when generating a configuration
header file. There are a number of CDL properties for this, including define_format and if_define. The most
flexible is define_proc: this allows the component writer to specify a Tcl script that gets invoked whenever the
configuration system generates the header file for the owning package. The script can output anything to the
header file, for example it could generate a C data structure based on various configuration values.

At the point that the define_proc script is invoked there will be two channels to open files, accessible via Tcl
variables:cdl_header is a channel to the current package’s own header file for examplepkgconf/kernel.h ;
cdl_system_header is a channel to the global configuration filepkgconf/system.h . A typical define_proc
script will use theputs command to output data to one of these channels.

define_proc properties only take effect if the current option is active and enabled. The default behavior of the
configuration system for an option with thebool flavor corresponds to the following define_proc:

cdl_option XXX {
...
define_proc {

puts $cdl_header "#define XXX 1"
}

}

Warning
In the current implementation it is not possible for a define_proc property to examine the
current values of various configuration options and adapt accordingly. This is a major
limitation, and will be addressed in future versions of the configuration tools.

Example

cdl_package CYGPKG_HAL_ARM_PID {
display "ARM PID evaluation board"
parent CYGPKG_HAL_ARM
define_header hal_arm_pid.h
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include_dir cyg/hal
hardware

define_proc {
puts $::cdl_system_header "#define CYGBLD_HAL_TARGET_H <pkgconf/hal_arm.h >"
puts $::cdl_system_header "#define CYGBLD_HAL_PLATFORM_H <pkgconf/hal_arm_pid.h >"
puts $::cdl_header ""
puts $::cdl_header "#define HAL_PLATFORM_CPU \"ARM 7TDMI\""
puts $::cdl_header "#define HAL_PLATFORM_BOARD \"PID\""
puts $::cdl_header "#define HAL_PLATFORM_EXTRA \"\""
puts $::cdl_header ""

}
...

}

See Also

Propertiesdefine, define_format, define_header, if_defineandno_define.

114



description

Name
Property description — Provide a textual description for an option.

Synopsis

cdl_option <name> {
description <text >

...
}

Description

Users can only be expected to manipulate configuration options sensibly if they are given sufficient informa-
tion about these options. There are three properties which serve to explain an option in plain text: the display
property gives a textual alias for an option, which is usually more comprehensible than something likeCYG-

PKG_LIBC_TIME_ZONES; the description property gives a longer description, typically a paragraph or so; the
doc property specifies the location of additional on-line documentation related to a configuration option. In the
context of a graphical tool the display string will be the primary way for users to identify configuration options;
the description paragraph will be visible whenever the option is selected; the on-line documentation will only
be accessed when the user explicitly requests it.

At present there is no way of providing any sort of formatting mark-up in a description. It is possible that future
versions of the configuration tools will provide some control over the way the description text gets rendered.

Example

cdl_option CYGDBG_INFRA_DEBUG_TRACE_MESSAGE {
display "Use trace text"
default_value 1
description "

All trace calls within eCos contain a text message
which should give some information about the circumstances.
These text messages will end up being embedded in the
application image and hence there is a significant penalty
in terms of image size.
It is possible to suppress the use of these messages by
disabling this option.
This results in smaller code size, but there is less
human-readable information available in the trace output,
possibly only filenames and line numbers."

}

See Also

Propertiesdisplayanddoc.
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Name
Property display — Provide a short string describing this option.

Synopsis

cdl_option <name> {
display <string >

...
}

Description

Users can only be expected to manipulate configuration options sensibly if they are given sufficient informa-
tion about these options. There are three properties which serve to explain an option in plain text: the display
property gives a textual alias for an option, which is usually more comprehensible than something likeCYG-

PKG_LIBC_TIME_ZONES; the description property gives a longer description, typically a paragraph or so; the
doc property specifies the location of additional on-line documentation related to a configuration option. In the
context of a graphical tool the display string will be the primary way for users to identify configuration options;
the description paragraph will be visible whenever the option is selected; the on-line documentation will only
be accessed when the user explicitly requests it.

Example

cdl_option CYGNUM_KERNEL_SYNCH_MBOX_QUEUE_SIZE {
display "Message box queue size"
flavor data
legal_values 1 to 65535
default_value 10
description "

This configuration option controls the number of messages
that can be queued in a message box before a non-blocking
put() operation will fail or a blocking put() operation will
block. The cost in memory is one pointer per message box for
each possible message."

}

See Also

Propertiesdescriptionanddoc.
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Name
Property doc — The location of online-documentation for a configuration option.

Synopsis

cdl_option <name> {
doc <URL;>
...

}

Description

Users can only be expected to manipulate configuration options sensibly if they are given sufficient informa-
tion about these options. There are three properties which serve to explain an option in plain text: the display
property gives a textual alias for an option, which is usually more comprehensible than something likeCYG-

PKG_LIBC_TIME_ZONES; the description property gives a longer description, typically a paragraph or so; the
doc property specifies the location of additional on-line documentation related to a configuration option. In the
context of a graphical tool the display string will be the primary way for users to identify configuration options;
the description paragraph will be visible whenever the option is selected; the on-line documentation will only
be accessed when the user explicitly requests it.

The documentation may be an absolute URL, but more generally the on-line documentation will be shipped
with the package and can be accessed via a relative URL. If the package follows thedirectory layout con-
ventionsthen the configuration tools will search for the specified html file first in thedoc subdirectory of the
package, then relative to the package directory itself. The URL may contain a# character to specify an anchor
within a page.

Warning
At the time of writing the eCos packages in the standard distribution do not conform to the
directory layout conventions when it comes to the documentation. Instead of organizing
the documentation on a per-package basis and placing it in the corresponding doc sub-
directories, all the documentation is kept in a central location. This should get addressed
in a future release of the system. Third party component writers should follow the layout
conventions.

Example

cdl_package CYGPKG_KERNEL {
display "eCos kernel"
doc ref/ecos-ref.4.html
include_dir cyg/kernel
description "

This package contains the core functionality of the eCos
kernel. It relies on functionality provided by various HAL
packages and by the eCos infrastructure. In turn the eCos
kernel provides support for other packages such as the device
drivers and the uITRON compatibility layer."
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...
}

See Also

Propertiesdescriptionanddisplay.
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Name
Property flavor — Specify the nature of a configuration option.

Synopsis

cdl_option <name> {
flavor <flavor >

...
}

Description

The state of a CDL configuration option is a somewhat complicated concept. This state determines what hap-
pens when a build tree is generated: it controls what files get built and what#define’s end up in configuration
header files. The state also controls the values used during expression evaluation. The key concepts are:

1. An option may or may not be loaded into the current configuration. However it is still possible for packages
to reference options which are not loaded in a requires constraint or other expression. If an option is not
loaded then it will have no direct effect on the build process, and0 will be used for expression evaluation.

2. Even if an option is loaded it may still be inactive. Usually this is controlled by the option’s location in
the configuration hierarchy. If an option’s parent is active and enabled then the option will normally be
active. If the parent is either inactive or disabled then the option will be inactive. For example, if kernel
timeslicing is diabled then the optionCYGNUM_KERNEL_SCHED_TIMESLICE_TICKSis irrelevant and must
have no effect. The active_if property can be used to specify additional constraints. If an option is inactive
then it will have no direct effect on the build process, in other words it will not cause any files to get built
or #define’s to be generated. For the purposes of expression evaluation an inactive option has a value of
0.

3. An option may be enabled or disabled. Most options are boolean in nature, for example a particular func-
tion may get inlined or it may involve a full procedure call. If an option is disabled then it has no direct
effect on the build process, and for the purposes of expression evaluation it has a value of 0.

4. An option may also have additional data associated with it, for example a numerical value used to control
the size of an array.

Most options are boolean in nature and do not have any additional associated data. For some options only the
data part makes sense and users should be unable to manipulate the enabled/disabled part of the state. For a
comparatively small number of options it makes sense to have the ability to disable that option or to enable
it and associate data as well. Finally, when constructing an option hierarchy it is occasionally useful to have
entities which serve only as placeholders. The flavor property can be used to control all this. There are four
possible values. It should be noted that the active or inactive state of an option takes priority over the flavor:
if an option is inactive then no#define’s will be generated and any build-related properties such as compile
will be ignored.

flavor none

Thenone is intended primarily for placeholder components in the hierarchy, although it can be used for
other purposes. Options with this flavor are always enabled and do not have any additional data associated
with them, so there is no way for users to modify the option. For the purposes of expression evaluation an
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option with flavornone always has the value1. Normal#define processing will take place, so typically a
single#define will be generated using the option name and a value of1. Similarly build-related properties
such as compile will take effect.

flavor bool

Boolean options can be either enabled or disabled, and there is no additional data associated with them.
If a boolean option is disabled then no#define will be generated and any build-related properties such
as compile will be ignored. For the purposes of expression evaluation a disabled option has the value0. If
a boolean option is enabled then normal#define processing will take place, all build-related properties
take effect, and the option’s value will be1.

flavor data

Options with this flavor are always enabled, and have some additional data associated with them which can
be edited by the user. This data can be any sequence of characters, although in practice the legal_values
property will often be used to impose constraints. In appropriate contexts such as expressions the con-
figuration tools will attempt to interpret the data as integer or floating point numbers. Since an option
with thedata flavor cannot be disabled, normal#define processing takes place and the data will be used
for the value. Similarly all build-related properties take effect, and the option’s value for the purposes of
expression evaluation is the data.

flavor booldata

This combines thebool anddata flavors. The option may be enabled or disabled, and in addition the
option has some associated data. If the option is disabled then no#define will be generated, the build-
related properties have no effect, and for the purposes of expression evaluation the option’s value is0.
If the option is enabled then a#define will be generated using the data as the value, all build-related
properties take effect, and the option’s value for the purposes of expression evaluation is the data. If0 is
legal data then it is not possible to distinguish this case from the option being disabled or inactive.

Options and components have thebool flavor by default, but this can be changed as desired. Packages always
have thebooldata flavor, and this cannot be changed. Interfaces have thedata flavor by default, since the
value of an interface is a count of the number of active and enabled interfaces, but they can be given thebool

or booldata flavors.

Note: The expression syntax needs to be extended to allow the loaded, active, enabled and data aspects
of an option’s state to be examined individually. This would allow component writers to distinguish between
a disabled booldata option and an enabled one which has a value of 0. Such an enhancement to the
expression syntax may also prove useful in other circumstances.

Example

cdl_component CYGPKG_LIBM_COMPATIBILITY {

cdl_component CYGNUM_LIBM_COMPATIBILITY {
flavor booldata
...

cdl_option CYGNUM_LIBM_COMPAT_DEFAULT {
flavor data
...

}
}
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...
}

cdl_component CYGPKG_LIBM_TRACE {
flavor bool
...

}

See Also

Propertiescalculated, default_valueandlegal_values,
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Name
Property hardware — Specify that a package is tied to specific hardware.

Synopsis

cdl_option <name> {
active_if <condition >

...
}

Description

Some packages such as device drivers and HAL packages are hardware-specific, and generally it makes no
sense to add such packages to a configuration unless the corresponding hardware is present on your target sys-
tem. Typically hardware package selection happens automatically when you select your target. The hardware
property can be used in the body of acdl_package command to indicate that the package is hardware-specific.

Note: At the time of writing the hardware property is largely ignored by the configuration tools, but this may
change in future. Amongst other possible changes, for hardware-specific packages such as device drivers
and HAL packages, the current scheme of generating a configuration header file name based purely on
the package name may be abandoned. Instead all hardware packages would send their configuration
data to a single header file, pkgconf/hardware.h . This would make it easier for code to obtain details of the
current hardware, but obviously there are compatibility issues. For now it is recommended that all hardware
packages specify their configuration header file explicitly.

Example

cdl_package CYGPKG_HAL_ARM {
display "ARM architecture"
parent CYGPKG_HAL
hardware
include_dir cyg/hal
define_header hal_arm.h
...

}

See Also

Propertydefine_header, and commandcdl_package .
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Name
Property if_define — Output a common preprocessor construct to a configuration header file.

Synopsis

cdl_option <name> {
if_define [-file= <filename >] <symbol1 > <symbol2 >

...
}

Description

The purpose of the if_define property is best explained by an example. Suppose you want finer-grained control
over assertions, say on a per-package or even a per-file basis rather than globally. The assertion macros can be
defined by an exported header file in an infrastructure package, using code like the following:

#ifdef CYGDBG_USE_ASSERTS
# define CYG_ASSERT( _bool_, _msg_ ) \

CYG_MACRO_START \
if ( ! ( _bool_ ) ) \

CYG_ASSERT_DOCALL( _msg_ ); \
CYG_MACRO_END

#else
# define CYG_ASSERT( _bool_, _msg_ ) CYG_EMPTY_STATEMENT
#endif

Assuming this header file is#include’d directly or indirectly by any code which may need to be built with
assertions enabled, the challenge is now to control whether or notCYGDBG_USE_ASSERTSis defined for any
given source file. This is the purpose of the if_define property:

cdl_option CYGDBG_KERNEL_USE_ASSERTS {
...
if_define CYGSRC_KERNEL CYGDBG_USE_ASSERTS
requires CYGDBG_INFRA_ASSERTION_SUPPORT

}

If this option is active and enabled then the kernel’s configuration header file would end up containing the
following:

#ifdef CYGSRC_KERNEL
# define CYGDBG_USE_ASSERTS 1
#endif

Kernel source code can now begin with the following construct:

#define CYGSRC_KERNEL 1
#include <pkgconf/kernel.h >

#include <cyg/infra/cyg_ass.h >

The configuration option only affects kernel source code, assuming nothing else#define’s the symbol
CYGSRC_KERNEL. If the per-package assertion option is disabled thenCYGDBG_USE_ASSERTSwill not get
defined. If the option is enabled thenCYGDBG_USE_ASSERTSwill get defined and assertions will be enabled
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for the kernel sources. It is possible to use the same mechanism for other facilities such as tracing, and to
apply it at a finer grain such as individual source files by having multiple options with if_define properties and
multiple symbols such asCYGSRC_KERNEL_SCHED_BITMAP_CXX.

The if_define property takes two arguments, both of which must be valid C preprocessor symbols. If the current
option is active and enabled then three lines will be output to the configuration header file:

#ifdef <symbol1 >

# define <symbol2 >

#endif

If the option is inactive or disabled then these lines will not be output. By default the current package’s con-
figuration header file will be used, but it is possible to specify an alternative destination using a-file option.
At present the only legitimate alternative destination issystem.h , the global configuration header. if_define
processing happens in addition to, not instead of, the normal#define processing or the handling of other
header-file related properties.

Note: The infrastructure in the current eCos release does not yet work this way. In future it may do so, and
the intention is that suitable configuration options get generated semi-automatically by the configuration
system rather than having to be defined explicitly.

Tip: As an alternative to changing the configuration, updating the build tree, and so on, it is possible to
enable assertions by editing a source file directly, for example:

#define CYGSRC_KERNEL 1
#define CYGDBG_USE_ASSERTS 1
#include <pkgconf/kernel.h >

#include <cyg/infra/cyg_ass.h >

The assertion header file does not care whether CYGDBG_USE_ASSERTSis #define’d via a configuration
option or by explicit code. This technique can be useful to component writers when debugging their source
code, although care has to be taken to remove any such #define’s later on.

Example

cdl_option CYGDBG_KERNEL_USE_ASSERTS {
display "Assertions in the kernel package"
...
if_define CYGSRC_KERNEL CYGDBG_USE_ASSERTS
requires CYGDBG_INFRA_ASSERTION_SUPPORT

}

See Also

Propertiesdefine, define_format, define_header, define_procandno_define.
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Name
Property implements — Enabling this option provides one instance of a more general interface.

Synopsis

cdl_option <name> {
implements <interface >

...
}

Description

The CDL interface concept provides an abstraction mechanism that can be useful in many different circum-
stances. Essentially an interface is a calculated option whose value is the number of active and enabled options
which implement that interface. For example the interfaceCYGINT_KERNEL_SCHEDULERhas a value corre-
sponding to the number of schedulers in the system, typically just one.

The implements property takes a single argument, which should be the name of an interface. This interface
may be defined in the same package as the implementor or in some other package. In the latter case it may
sometimes be appropriate for the implementor or the implementor’s package to have a requires property for
the package containing the interface. An option may contain multiple implements properties. It is possible for
an option to implement a given interface multiple times, and on occasion this is actually useful.

Example

cdl_option CYGSEM_KERNEL_SCHED_MLQUEUE {
display "Multi-level queue scheduler"
default_value 1
implements CYGINT_KERNEL_SCHEDULER
...

}

See Also

Commandcdl_interface .
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Name
Property include_dir — Specify the desired location of a package’s exported header files in the
install tree.

Synopsis

cdl_package <name> {
include_dir <sub-directory >

...
}

Description

Most packages export one or more header files defining their public interface. For example the C library
exports header files such asstdio.h andctype.h . If the package follows thedirectory layout conventions
then the exported header files will normally be found in the package’sinclude sub-directory. Alternatively
the include_files property can be used to specify which header files should be exported.

By default a package’s exported header files will be copied to theinclude sub-directory of the install tree.
This is correct for packages like the C library because that is the correct location for files such asstdio.h .
However to reduce the probability of name clashes it is desirable for packages to use different sub-directories,
for example infrastructure header files get copied toinclude/cyg/infra rather than to the top-levelinclude

directory itself.

It would be possible to replicate these sub-directories in each package’s source tree, such that the infrastructure
header file sources lived ininclude/cyg/infra in the source tree as well as in the install tree. This would
make things more difficult for the package developers. Instead it is possible to specify the desired install tree
sub-directory using an include_dir property, for exampleinclude_dir cyg/infra .

The include_dir property can only be used in the body of acdl_package command, since it applies to all of
the header files exported by a package, and only one include_dir property can be used. If there is no include_dir
property then exported header files will end up in the top-levelinclude directory of the install tree.

Example

cdl_package CYGPKG_INFRA {
display "Infrastructure"
include_dir cyg/infra
description "

Common types and useful macros.
Tracing and assertion facilities.
Package startup options."

...
}

See Also

Propertyinclude_files, and commandcdl_package .
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Name
Property include_files — List the header files that are exported by a package.

Synopsis

cdl_package <name> {
include_files <file1 > ...
...

}

Description

Most packages export one or more header files defining their public interface. For example the C library
exports header files such asstdio.h andctype.h . If the package follows thedirectory layout conventions
then the exported header files will normally be found in the package’sinclude sub-directory. For packages
which do not follow these conventions, typically simple ones for which a complicated sub-directory hierarchy
is undesirable, there has to be an alternative way of specifying which header file or files define the public
interface. The include_files property provides support for this.

By default, if a package does not have aninclude subdirectory and it does not have an include_files property
then all files with a suffix of.h , .hxx , .inl or .inc will be treated as public header files. However some of
these may be private files containing implementation details. If there is an include_files property then only the
files listed in that property will be exported.

If a package should not export any header files but does contain private implementation headers, an in-
clude_files property with no arguments should be used.

Example

cdl_package <SOME_PACKAGE> {
...
include_dir <some directory >

include_files interface.h
}

cdl_package <ANOTHER_PACKAGE> {
...
include_files

}

See Also

Propertyinclude_dir, and commandcdl_package .
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Name
Property legal_values — Impose constraints on the possible values for an option.

Synopsis

cdl_option <name> {
legal_values <list expression >

...
}

Description

Options with thedata or booldata flavors can have an arbitrary sequence of characters as their data. In nearly
all cases some restrictions have to be imposed, for example the data should correspond to a number within a
certain range, or it should be one of a small number of constants. The legal_values property can be used to
impose such constraints. The arguments to the property should be a CDL list expression, seethe Section called
List Expressionsin Chapter 3for the syntactic details. Common examples include:

legal_values 0 to 0x7fff
legal_values 9600 19200 38400
legal_values { "RAM" "ROM" }

The legal_values property can only be used for options with thedata or booldata flavors, since it makes little
sense to further constrain the legal values of a boolean option. An option can have at most one legal_values
property.

Tip: If the first entry in a legal_values list expression is a negative number, for example legal_values -

1 to 1 then this can be misinterpreted as an option instead of as part of the expression. Currently the
legal_values property does not take any options, but this may change in future. Option processing halts at
the sequence -- , so the desired range can be expressed safely using legal_values -- -1 to 1

Note: Architectural HAL packages should provide constants which can be used in legal_values list expres-
sions. For example it should be possible to specify a numeric range such as 0 to CYGARC_MAXINT, rather
than hard-wiring numbers such as 0x7fffffff which may not be valid on all targets. Current HAL packages
do not define such constants.

Note: The legal_values property is restricted mainly to numerical ranges and simple enumerations, and
cannot cope with more complicated data items. Future versions of the configuration system will provide
additional data validation facilities, for example a check_proc property which specifies a Tcl script that can
be used to perform the validation.
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Example

cdl_option CYGNUM_LIBC_TIME_STD_DEFAULT_OFFSET {
display "Default Standard Time offset"
flavor data
legal_values -- -90000 to 90000
default_value -- 0
description "

This option controls the offset from UTC in
seconds when in local Standard Time. This
value can be positive or negative. It
can also be set at run time using the
cyg_libc_time_setzoneoffsets() function."

}

See Also

Propertiescalculated, default_value, andflavor.
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Name
Property library — Specify which library should contain the object files generated by building this
package.

Synopsis

cdl_package <name> {
library <library name >

...
}

Description

By default all object files that get built for all packages end up in a single library,libtarget.a . This makes
things easier for the typical application developer because it is only necessary to link with a single library,
rather than with separate libraries for each package. It is possible to specify an alternative library for specific
files as an option to the compile and make_object properties, and there is one librarylibextras.a which
serves a specific purpose in the build system. The library property allows an alternative library to be specified
for all the object files that will be generated for a given package.

The use of the library property should be avoided, since it makes things more difficult for application develop-
ers. The property is intended only for special cases, for example if there are legal objections to mingling object
files from different packages in a single library. It could also be used to work around name clash problems
if two packages happen to define an exported symbol with the same name, but any attempt to use multiple
libraries in this way is error-prone and should be avoided.

The library property takes a single argument, the name of a library, which should follow the standard naming
convention oflib <something >.a . A library property can only occur in the body of acdl_package command
and applies to all object files generated for that package (except where explicitly overwritten with a-library=

option to one of the build-related properties). Acdl_package body can contain at most one library property.

Example

cdl_package <SOME_PACKAGE> {
...
library libSomePackage.a

}

See Also

Propertiescompile, make, andmake_object, commandcdl_package .
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Name
Property make — Define an additional custom build step associated with an option, resulting in a target
that should not go directly into a library.

Synopsis

cdl_option <name> {
make [-priority= <pri >] {

<custom build step >

}
...

}

Description

When building an eCos configuration the primary target is a single library,libtarget.a . In some cases it is
necessary to build some additional targets. For example architectural HAL packages typically build a linker
script and some start-up code. Such additional targets can be specified by a make property. Any option can
have one or more make properties, although typically such properties only occur in the body of acdl_package

command.

The make property takes a single argument, which resembles a makefile rule: it consists of a target, a list of
dependencies, and one or more commands that should be executed. However the argument is not a makefile
fragment, and custom build steps may get executed in build environments that do not involve make. For full
details of custom build steps seethe Section calledCustom Build Stepsin Chapter 4.

Warning
The exact syntax and limitations of custom build steps have not yet been finalized, and
are subject to change in future versions of the configuration tools.

The make property takes an optional priority argument indicating the order in which build steps take place.
This priority complements the dependency list, and avoids problems with packages needing to know details of
custom build steps in other packages (which may change between releases). The defined order is:

Priority 0

The header files exported by the current set of packages are copied to the appropriate places in theinclude

subdirectory of the install tree. Any unnecessary copies are avoided, to prevent rebuilds of package and
application source modules caused by header file dependencies.

Note: A possible future enhancement of the build system may result in the build and install trees being
updated automatically if there has been a change to the ecos.ecc configuration savefile.
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Priority 100

All files specified in compile properties will get built, producing the corresponding object files. In addition
any custom build steps defined by make_object properties get executed, unless there is a-priority=

option.

Priority 200

The libraries now get built using the appropriate object files.

Priority 300

Any custom build steps specified by make properties now get executed, unless the priority for a particular
build step is changed from its default.

For example, if a custom build step needs to take place before any of the normal source files get compiled then
it should be given a priority somewhere between 0 and 100. If a custom build step involves post-processing an
object file prior to its incorporation into a library then a priority between 100 and 200 should be used.

Example

cdl_package CYGPKG_HAL_MN10300_AM33 {
display "MN10300 AM33 variant"
parent CYGPKG_HAL_MN10300
implements CYGINT_HAL_MN10300_VARIANT
hardware
include_dir cyg/hal
define_header hal_mn10300_am33.h
description "

The MN10300 AM33 variant HAL package provides generic
support for this processor architecture. It is also
necessary to select a specific target platform HAL
package."

make {
<PREFIX>/lib/target.ld: <PACKAGE>/src/mn10300_am33.ld
$(CC) -E -P -Wp,-MD,target.tmp -DEXTRAS=1 -xc $(INCLUDE_PATH) $(CFLAGS) -o $@ $ <

@echo $@ ": \\" > $(notdir $@).deps
@tail +2 target.tmp >> $(notdir $@).deps
@echo >> $(notdir $@).deps
@rm target.tmp

}
}

See Also

Propertiescompile, make_objectandlibrary.
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Name
Property make_object — Define a custom build step, resulting in an object file that should go into a
library.

Synopsis

cdl_option <name> {
make_object [-library= <library >] [-priority= <pri >] {

<custom build step >

}
...

}

Description

When building an eCos configuration the primary target is a single library,libtarget.a . Most of the object
files which go into this library will be generated as a result of compile properties. Occasionally it may be
necessary to have special build steps for a given object file, and this can be achieved with a make_object
property. The use of this property should be avoided whenever possible because it greatly increases the risk of
portability problems, both on the host side because of possible problems with the tools, and on the target side
because a custom build step may not allow adequately for the wide variety of architectures supported by eCos.

The make_object property takes a single argument, which resembles a makefile rule: it consists of a target,
a list of dependencies, and one or more commands that should be executed. The target should be an object
file. However the make_object argument is not a makefile fragment, and custom build steps may get executed
in build environments that do not involve make. For full details of custom build steps seethe Section called
Custom Build Stepsin Chapter 4.

Warning
The exact syntax and limitations of custom build steps have not yet been finalized, and
may change in future versions of the configuration tools.

The make_object property takes an optional library argument. If no library is specified then the default library
for the current package will be used, which will belibtarget.a unless thecdl_package command contains
a library property.

The make_object property also takes an optional priority argument indicating the order in which build steps
take place. This priority complements the dependency list, and avoids problems with packages needing to know
details of custom build steps in other packages (which may change between releases). The defined order is:

Priority 0

The header files exported by the current set of packages are copied to the appropriate places in theinclude

subdirectory of the install tree. Any unnecessary copies are avoided, to prevent rebuilds of package and
application source modules caused by header file dependencies.

Note: A possible future enhancement of the build system may result in the build and install trees being
updated automatically if there has been a change to the ecos.ecc configuration savefile.
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Priority 100

All files specified in compile properties will get built, producing the corresponding object files. In addition
any custom build steps defined by make_object properties get executed, unless there is a-priority=

option.

Priority 200

The libraries now get built using the appropriate object files.

Priority 300

Any custom build steps specified by make properties now get executed, unless the priority for a particular
build step is changed from its default.

For example, if a custom build step needs to take place before any of the normal source files get compiled then
it should be given a priority somewhere between 0 and 100. If a custom build step involves post-processing an
object file prior to its incorporation into a library then a priority between 100 and 200 should be used. It is not
sensible to have a priority above 200, since that would imply building an additional object file for a library that
has already been created.

Example

cdl_option XXX {
...
make_object {

parser.o: parser.y
yacc $ <

$(CC) $(CFLAGS) -o $@ y.tab.c
}

}

See Also

Propertiescompile, makeandlibrary.
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Name
Property no_define — Suppress the normal generation of a preprocessor#define symbol in a
configuration header file.

Synopsis

cdl_option <name> {
no_define
...

}

Description

By default all active and enabled properties result in either one or two#define’d symbols in the package’s
configuration header file, and this is one of the main ways in which options can affect packages at build-time.
It is possible to suppress the default#define’s by specifying a no_define property in the body of an option or
other CDL entity. This property takes no arguments and should occur only once in a given body.

The no_define property is frequently used in conjunction with one of the other header-file related properties
such as define. If one of the other properties is used to export the required information to a configuration header
file then often there is little point in exporting the default#define as well — in fact there could be a name
clash. The no_define property can also be useful if the sole purpose of an option is to affect which files get
built, and the default#define would never get tested in any source code. However in such cases the default
#define is mostly harmless and there is little to be gained by suppressing it.

Example

cdl_component CYG_HAL_STARTUP {
display "Startup type"
flavor data
legal_values { "RAM" "ROM" }
default_value {"RAM"}
no_define
define -file system.h CYG_HAL_STARTUP
...

}

See Also

Propertiesdefine, define_format, define_header, define_procandif_define.
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Name
Property parent — Control the location of an option in the configuration hierarchy.

Synopsis

cdl_option <name> {
parent <component or package >

...
}

Description

Configuration options live in a hierarchy of packages and components. By default a given option’s position in
the hierarchy is a simple consequence of its position within the CDL scripts. Packages are generally placed
at the top-level of the configuration. Any components or options that are defined at the same level as the
cdl_package command in a package’s top-level CDL script are placed immediately below that package in
the hierarchy. Any options or components that are defined in the body of acdl_package or cdl_component

command, or that are read in as a result of processing a component’s script property, will be placed immediately
below that package or component in the hierarchy.

In some circumstances it is useful to specify an alternative position in the hierarchy for a given option. For
example it is often convenient to re-parent device driver packages belowCYGPKG_IOin the configuration hi-
erarchy, thus reducing the number of packages at the top level of the hierarchy and making navigation easier.
The parent property can be used to achieve this.

The parent property takes a single argument, which should be the name of a package or component. The body
of a cdl_option or other CDL entity can contain at most one parent property.

Although the parent property affects an option’s position in the overall hierarchy and hence whether or not that
option is active, a re-parented option still belongs to the package that defines it. By default any#define’s

will be exported to that package’s configuration header file. Any compile properties can only reference source
files present in that package, and it is not directly possible to cause some file in another package to be built by
re-parenting.

As a special case, if an empty string is specified for the parent then the option is placed at the top of the
hierarchy, ahead of any packages which are not explicitly re-parented in this way. This facility is useful for
configuration options such as global preferences and default compiler flags.

Tip: If an option is re-parented somewhere below another package and that other package is not actually
loaded, the option is an orphan and its active/inactive state is undefined. In such cases it is a good idea for
the owning package to require the presence of the other one. Unfortunately this technique does not work if
a package as a whole is reparented below another one that has not been loaded: the package is orphaned
so it may be automatically inactive, and hence any requires properties would have no effect.

Example

cdl_package CYGPKG_HAL_I386 {
display "i386 architecture"
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parent CYGPKG_HAL
hardware
include_dir cyg/hal
define_header hal_i386.h
...

}

cdl_component CYGBLD_GLOBAL_OPTIONS {
display "Global build options"
parent ""
...

}

See Also

Propertyscript, commandscdl_component andcdl_package .
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Name
Property requires — List constraints that the configuration should satisfy if a given option is active
and enabled..

Synopsis

cdl_option <name> {
requires <goal expression >

...
}

Description

Configuration options are not independent. For example the C library can provide thread-safe implementa-
tions of certain functions, but only if the kernel is present, if the kernel provides multi-threading, and if the
kernel options related to per-thread data are enabled. It is possible to express such constraints using requires
properties.

The arguments to a requires property should constitute a goal expression, as described inthe Section calledList
Expressionsin Chapter 3. Most goal expressions are relatively simple because the constraints being described
are simple, but complicated expressions can be used when necessary. The body of an option or other CDL entity
can contain any number of requires constraints. If the option is active and enabled then all these constraints
should be satisfied, and any goal expressions which evaluate to0 will result in conflicts being raised. It is
possible for users to ignore such conflicts and attempt to build the current configuration anyway, but there is
no guarantee that anything will work. If an option is inactive or disabled then its requires constraints will be
ignored.

The configuration system contains an inference engine which can resolve many types of conflicts automatically.
For example, if optionA is enabled and requires an optionB that is currently disabled then the inference engine
may attempt to resolve the conflict by enablingB. However this will not always be possible, for example
there may be other constraints in the configuration which forceB to be disabled at present, in which case user
intervention is required.

Example

cdl_component CYGPKG_IO_SERIAL_POWERPC_COGENT_SERIAL_A {
display "Cogent PowerPC serial port A driver"
flavor bool
default_value 0
requires (CYGIMP_KERNEL_INTERRUPTS_CHAIN || \

!CYGPKG_IO_SERIAL_POWERPC_COGENT_SERIAL_B)
...

}

See Also

Propertyactive_if.
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Name
Property script — Include additional configuration information from another CDL script.

Synopsis

cdl_component <name> {
script <filename >

...
}

Description

It is possible to define all the configuration options and sub-components for a given package in a single CDL
script, either by nesting them in the appropriate command bodies, by extensive use of the parent property, or by
some combination of these two. However for large packages this is inconvenient and it is better to split the raw
configuration data over several different files. The script property can be used to achieve this. It takes a single
filename as argument. If the package follows thedirectory layout conventionsthen the configuration tools will
look for the specified file in thecdl sub-directory of the package, otherwise it will look for the file relative to
the package’s top-level directory.

The script property can only occur in the body of acdl_component command, and only one script property per
body is allowed.

Example

cdl_component CYGPKG_UITRON_TASKS {
display "Tasks"
flavor none
description "

uITRON Tasks are the basic blocks of multi-tasking
in the uITRON world; they are threads or lightweight
processes, sharing the address space and the CPU.
They communicate using the primitives outlined above.
Each has a stack, an entry point (a C or C++ function),
and (where appropriate) a scheduling priority."

script tasks.cdl
}

See Also

Commandcdl_component , and propertyparent.
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Chapter 6. Templates, Targets and Other Topics

Templates
This section is still under construction.

Targets
This section is still under construction.
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